
   

Klausur 
MSc Volkswirtschaftslehre  

"Dynamische Modelle in den Wirtschaftswissenschaften" 
Sommersemester 2020, 28.7.2020 

 

Lösen Sie zwei (und nicht mehr als zwei) der folgenden Aufgaben 1 – 5  
und außerdem die beiden Aufgaben 6 und 7. 

Die Gewichte bei der Bewertung sind 12,5% für jede der Aufgaben 1 – 5, 25% für die 
Aufgabe 6 und 50 % für die Aufgabe 7. 

 

Bei keiner der Aufgaben sind längere Texte erforderlich.  

 
1.  Lösen sie folgende Differenzengleichung und erläutern Sie den Rechenweg in kurzen 

Sätzen: 

xt – ½ xt-1 = 2t  , x0 = 0 

 

2.  Eine Differentialgleichung erster Ordnung lautet 𝑥̇𝑥 = −2𝑥𝑥2𝑡𝑡 mit 𝑥𝑥(0) = 1. Lösen Sie 
die Gleichung! 

 

3. Betrachten Sie die Differentialgleichung 𝑥̇𝑥 = 𝑎𝑎 + 𝑥𝑥2 und zeichnen Sie das Phasen-
diagramm für a=0, a>0 und a<0. Zeichnen Sie dann das Bifurkationsdiagramm. 

 

4. Zeichnen Sie ein Phasendiagramm für das Gleichungssystem 𝐱̇𝐱 = 𝐀𝐀(𝐱𝐱 − 𝐱𝐱�) für den 
Fall.  

𝐀𝐀 = �
1 1
1
2 2�. 

Welche Eigenwerte erhält man? Um welchen Typ von Lösung (stabil, instabil, Fokus, 
Knoten, Sattelpfad …) handelt es sich? Weitere Erläuterungen sind nicht erforderlich. 

 

5. Zeichnen Sie ein Phasendiagramm für das Gleichungssystem 𝐱̇𝐱 = 𝐀𝐀(𝐱𝐱 − 𝐱𝐱�) für den Fall 

𝐀𝐀 = �0 −2
2 0 �. 

Welche Eigenwerte erhält man? Um welchen Typ von Lösung (stabil, instabil, Fokus, 
Knoten, Sattelpfad …) handelt es sich? Weitere Erläuterungen sind nicht erforderlich. 

  



   

 

6 Nichtlineares Differentialgleichungssystem. Betrachtet wird ein als Allmende 
betriebenes Weideland. Die Qualität des Weidelands wird als erneuerbare Ressource 
S(t) mit einer konkaven Regenerationsfunktion g(S(t)) modelliert, die ausgehend von 
g(0)=0  zunächst steigt, dann fällt und bei S(t)=Smax wieder der Wert 0 erreicht. Der 
Viehbestand ist V(t). Es gelte 𝑆̇𝑆 = 𝑔𝑔(𝑆𝑆) − 𝑉𝑉 . Die zeitliche Veränderung des 
Viehbestandes ist eine steigende Funktion von 𝑓𝑓(𝑆𝑆), die für einen Wert 𝑆𝑆̅ den Wert Null 
annimmt, wobei 𝑆𝑆̅ links vom Maximum der Regenerationsfunktion liegen soll. 

Schreiben Sie die beiden Differentialgleichungen des Modells auf, bestimmen Sie das 
Gleichgewicht, die Eigenwerte im Gleichgewicht, und zeichnen Sie ein Phasen-
diagramm. 

 

7  Dynamische Optimierung. Ein Vampir mit einer streng konkaven Nutzenfunktion, 
einer Zeitdiskontrate ρ und einem unendlichen Zeithorizont treibt in Transsylvanien 
sein Unwesen. Nutzen zieht er aus der Zahl der Menschen, die er aussaugt, B(t). Diese 
Menschen sterben. Die Bevölkerung Transylvaniens, N(t), vermehrt sich exponentiell 
mit einer exogenen Rate n>0 und vermindert sich um die Menschen, die durch den 
Vampir sterben. 

a. Schreiben Sie das Optimierungsproblem auf. Erstellen Sie dann die Hamilton-
funktion, schreiben Sie die Optimalitätsbedingungen auf und eliminieren Sie die 
Kozustandsvariable. 

b. Erstellen Sie ein Phasendiagramm mit N(t) auf der horizontalen Achse unter der 
vereinfachenden Annahme 𝜌𝜌 = 𝑛𝑛, so dass , B(t) konstant ist. Hinweis: Es gibt nur 
eine Isokline. Zeichnen Sie die Anfangsbevölkerung, N(0) als senkrechte Linie ein. 
Es ergeben sich drei Kandidaten für optimale Lösungen, bei denen B(t) so gewählt 
wird, dass die Bevölkerung Transsylvaniens schrumpft, konstant bleibt oder 
wächst. Zeichnen Sie diese drei Fälle ein! Welche der Lösungen wird die optimale 
sein. Begründen Sie Ihre Ansicht in kurzen Sätzen. 

  



   

1 Solution of an n-th order linear difference equation 

1. Write the equation in the following form: 

  xt + a1 xt-1 + ….. + an xt-n = g(t). 

2. Find the particular solution to the non-homogeneous equation. 

2.1 Assume that the solution is 𝑥̅𝑥𝑡𝑡 = ℎ(𝑡𝑡), where h(t) "resembles" g(t).  

E.g., if g(t)=gt, use 𝑥̅𝑥𝑡𝑡 = ℎ𝑡𝑡.  

2.2 Solve the resulting equation for the parameter(s) of h(t). 

2.3 If the solution involves a division by zero, use 𝑥̅𝑥𝑡𝑡 = 𝑡𝑡ℎ(𝑡𝑡). If this dos not help, use 
𝑥̅𝑥𝑡𝑡 = 𝑡𝑡2ℎ(𝑡𝑡), and so on .... 

2.4 The particular solution can be interpreted as a long-run equilibrium. 

3. Find the solution of the homogeneous equation 

3.1 Assume that the solution is 𝑥̅𝑥𝑡𝑡 = 𝜆𝜆𝑡𝑡 . Thus: 

      λt + a1λt-1 + ….. + an λt-n = 0, 

3.2 Rewrite this as 

𝜆𝜆𝑡𝑡−𝑛𝑛(𝜆𝜆𝑛𝑛 + a1𝜆𝜆𝑛𝑛−1 +  … + a𝑛𝑛−1𝜆𝜆 + a𝑛𝑛) = 0 

3.3 Solve the characteristic equation 

𝜆𝜆𝑛𝑛 + a1𝜆𝜆𝑛𝑛−1 +  … + a𝑛𝑛−1𝜆𝜆 + a𝑛𝑛 =  0. 

3.4 The solution of the difference equation is a linear combination of all possible 
solutions, λi  

𝑥𝑥𝑡𝑡 = 𝐴𝐴1𝜆𝜆1𝑡𝑡 +  … . +𝐴𝐴𝑛𝑛𝜆𝜆𝑛𝑛𝑡𝑡 . 

In the case of a quadratic characteristic equation, a negative discriminate may lead to 
conjugate complex solutions. Then   

𝑥𝑥𝑡𝑡 = 𝑎𝑎2
𝑡𝑡/2(𝐴𝐴1 cos𝜔𝜔 𝑡𝑡 + 𝐴𝐴2 sin𝜔𝜔 𝑡𝑡). 

with 

cos𝜔𝜔 =
𝑎𝑎1

2√𝑎𝑎2
   ,   sin𝜔𝜔 = �1 −

𝑎𝑎12

4𝑎𝑎2 

 

  .  

4. Stability: The λi with the largest absolute value determines the stability behavior of the 
equation in the long run: stable if |𝜆𝜆i𝑚𝑚𝑚𝑚𝑚𝑚  | < 1 ,  unstable if  |𝜆𝜆i𝑚𝑚𝑚𝑚𝑚𝑚  | > 1. 

5. To find the general solution to the non-homogeneous equation, write 

𝑥𝑥𝑡𝑡 = 𝐴𝐴1𝜆𝜆1𝑡𝑡 +  … . +𝐴𝐴𝑛𝑛𝜆𝜆𝑛𝑛𝑡𝑡 + 𝑥̅𝑥𝑡𝑡. 

and use the information on particular values of xt at n different points in time to 
determine the Ais. 



   

2 Solution of a system of linear difference equations 

The system is given as a set of n equations, the i-th equation being 

xit = ai1 x1t-1 + ….. + ain xnt-1 + gi(t). 

1. Write the system in matrix form 

𝐱𝐱𝐭𝐭 = 𝐀𝐀𝐱𝐱𝐭𝐭−𝟏𝟏 + 𝐠𝐠(𝑡𝑡) 

with 

𝐱𝐱𝐭𝐭 = �
𝑥𝑥1𝑡𝑡
⋮
𝑥𝑥𝑛𝑛𝑛𝑛

� , 𝐀𝐀 = �
𝑎𝑎11 … 𝑎𝑎1𝑛𝑛
⋮ ⋮
𝑎𝑎𝑛𝑛1 … 𝑎𝑎𝑛𝑛𝑛𝑛

� , 𝐠𝐠(𝑡𝑡) = �
𝑔𝑔1(𝑡𝑡)
⋮

𝑔𝑔𝑛𝑛(𝑡𝑡)
�. 

2. Note that finding a particular solution is often impossible if the gi functions are of different 
types. Find the particular solution 𝐱𝐱�𝐭𝐭 by assuming that 𝐱𝐱�𝐭𝐭has the same shape as 𝐠𝐠(𝑡𝑡).  If for 
example there is a vector of exponential functions, 𝐠𝐠(𝑡𝑡)  = (1 + 𝛿𝛿)𝑡𝑡𝐠𝐠, where g is a vector 
of constants, then try 𝐱𝐱�𝐭𝐭 = (1 + 𝛿𝛿)𝑡𝑡𝛄𝛄 as a particular solution, where the 𝛄𝛄 is a vector of 
unknown constants. Using this in the difference equation, we have 

𝛄𝛄 = �𝚰𝚰 −
𝐀𝐀

1 + 𝛿𝛿
�
−1

𝐠𝐠. 

Alternatively one may prefer to write a system of n equations and solve it for the γis by 
Cramer's rule. If |(1 + 𝛿𝛿)𝚰𝚰 − 𝐀𝐀| = 0, the system does not have a solution and we try 𝐱𝐱�𝒕𝒕 =
𝑡𝑡𝐱𝐱�. With other functions 𝐠𝐠(𝑡𝑡), proceed in an analogous fashion. 

3. Find the solution of the homogeneous equations by determining the eigenvalues of A. They 
can be found by solving  det(A – λI)=0. If n=2, they are  

𝜆𝜆1,2 =
tr(𝐀𝐀)

2
± ��

tr(𝐀𝐀)
2

�
2

− det (𝐀𝐀). 

In the general case of n equations, the solution of the homogeneous equations is  

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝐴𝐴1𝛽𝛽𝑖𝑖
(1)𝜆𝜆1𝑡𝑡+ . . . +𝐴𝐴𝑛𝑛𝛽𝛽𝑖𝑖

(𝑛𝑛)𝜆𝜆𝑛𝑛𝑡𝑡 , 

where 𝑖𝑖 = 1, … ,𝑛𝑛  and where 𝛽𝛽𝑖𝑖
(𝑗𝑗) denotes the i-th component of the eigenvector 

corresponding to the j-th eigenvalue. The first components of the eigenvectors are set equal 
to one:  𝛽𝛽1

(𝑗𝑗) = 1 ∀𝑗𝑗 = 1, … ,𝑛𝑛. In the two-equations case we have 

𝑥𝑥1𝑡𝑡 = 𝐴𝐴1𝜆𝜆1𝑡𝑡 + 𝐴𝐴2𝜆𝜆2𝑡𝑡 , 

𝑥𝑥2𝑡𝑡 = 𝐴𝐴1
𝜆𝜆1 − 𝑎𝑎11
𝑎𝑎12

𝜆𝜆1𝑡𝑡 + 𝐴𝐴2
𝜆𝜆2 − 𝑎𝑎11
𝑎𝑎12

𝜆𝜆2𝑡𝑡 . 

4. Write down the solution of the homogeneous equations adding  𝐱𝐱�𝒕𝒕 on the right-hand side.  

5. Determine the constants by inserting the known values of 𝐱𝐱𝐭𝐭 on the left-hand side and the 
corresponding values of t on the right-hand side. 

6. The system is stable if |𝜆𝜆𝑖𝑖| < 1 for all 𝑖𝑖 ∈ (0,𝑛𝑛). In the case of complex eigenvalues, |𝜆𝜆𝑖𝑖| =
√𝛼𝛼2 + 𝜃𝜃2, where α is the real part and θ is the imaginary part.  



   

3 Nonlinear difference equations and chaos in economic models 

1. To construct a phase diagram for a nonlinear difference equation, write xt on the vertical 
axis and xt-1  on the horizontal axis. Then draw xt = f(xt-1) and a 45° line into the diagram. 
Use f(xt-1) to determine  xt and use the 45° line to obtain the starting value for the next period 
from xt. 

2. Stability can be checked by determining the slope of f(xt-1) in the equilibrium. If the absolute 
value of the slope is larger than 1, the equilibrium is unstable. 

3. To construct a model that possibly generates chaos, specify the functions of the under-
lying economic model such that you get a hump-shaped transition function xt = f(xt-1). 

 

  



   

4 Differential equations 

4.1 Linear differential equations with constant coefficients 

Consider the differential equation: 

𝑥̇𝑥 + 𝑎𝑎𝑎𝑎 = 𝑔𝑔(𝑡𝑡). 1 

1. To find a particular solution of the non-homogeneous equation, assume that 𝑥̅𝑥(𝑡𝑡) has the 
same functional form as 𝑔𝑔(𝑡𝑡), e.g. constant, linear, or exponential. Then insert this into the 
differential equation such that 𝑥̇̅𝑥 + 𝑎𝑎𝑥̅𝑥 = 𝑔𝑔(𝑡𝑡). Solve it. Usually this can be done without 
integration. If the solution involves division by zero, multiply the solution candidate by t and 
try again. 

2. To solve the homogeneous part, rewrite it as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎. 

Multiply by 𝑑𝑑𝑑𝑑 and divide by x: 

𝑑𝑑𝑑𝑑
𝑥𝑥

= −𝑎𝑎𝑎𝑎𝑎𝑎. 

Integrate and obtain an equation which is logarithmic in x and linear in t. Solve this for x 

𝑥𝑥 = 𝐴𝐴 ∙ 𝑒𝑒−𝑎𝑎𝑎𝑎, 

where 𝐴𝐴 = 𝑒𝑒𝐴𝐴𝑡𝑡−𝐴𝐴𝑥𝑥. This is the solution of the homogeneous equation.  

3. The solution is stable if a > 0. 

4. Use a given 𝑥𝑥(𝑡𝑡∗) to eliminate the integration constant. 

 

 

4.2 Method of variation of the constant  

If the particular solution of the non-homogeneous equation cannot be found by the standard 
method, try this approach. 

1. Starting from the solution of the homogeneous equation, 𝑥𝑥 = 𝐴𝐴 ∙ 𝑒𝑒−𝑎𝑎𝑎𝑎, replace the constant 
A by a function of time, A(t). Use this in the original differential equation:  

𝐴̇𝐴 ∙ 𝑒𝑒−𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒−𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒−𝑎𝑎𝑎𝑎 = 𝑔𝑔(𝑡𝑡). 

The last two terms on the left-hand side cancel out and we have 

𝐴̇𝐴 = 𝑒𝑒𝑎𝑎𝑎𝑎𝑔𝑔(𝑡𝑡). 

                                                        
1  Sometimes a nonlinear differential equation can be transformed into a linear one, e.g in the case of 

Solows growth model, 𝑘̇𝑘 = 𝑠𝑠𝑘𝑘𝛼𝛼 − 𝑛𝑛𝑛𝑛. Replace k by 𝑧𝑧1/(1−𝛼𝛼) . Then 𝑧̇𝑧 = (1 − 𝛼𝛼)𝑠𝑠 − (1 − 𝛼𝛼)𝑛𝑛𝑧𝑧   . 



   

2. Integration then yields  

𝐴𝐴 = �𝑔𝑔(𝑡𝑡)𝑒𝑒𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑 + 𝐴̃𝐴, 

where 𝐴̃𝐴 is the new integration constant. We then have 

𝑥𝑥 = ��𝑔𝑔(𝑡𝑡)𝑒𝑒𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑 + 𝐴̃𝐴� 𝑒𝑒−𝑎𝑎𝑎𝑎. 

3. Solve this integral (if possible) and eliminate the integration constant by using a given 
𝑥𝑥(𝑡𝑡∗).  

 

 

4.3 Separable differential equations 

Consider a differential equation of the type  

𝑓𝑓(𝑥𝑥) ∙ 𝑥̇𝑥 = 𝑔𝑔(𝑡𝑡). 

1. Rewrite the equation by multiplying by 𝑑𝑑𝑑𝑑 and then integrating 

�𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑥𝑥 = �𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑡𝑡. 

2. Solve the integral, subtract one of the constants on both sides to obtain a single constant 
and eliminate the constant by using a given 𝑥𝑥(𝑡𝑡∗). 

 

 

4.4 Linear differential equations with time-varying coefficients 

The differential equation is 

𝑥̇𝑥 + ℎ(𝑡𝑡)𝑥𝑥 = 𝑔𝑔(𝑡𝑡). 

1. Let us initially look at the homogeneous equation and rewrite it 

𝑑𝑑𝑑𝑑
𝑥𝑥

= −ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑. 

Integration yields 

ln(𝑥𝑥) + 𝐴𝐴𝑥𝑥 = −�ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑡𝑡 

𝑥𝑥 = 𝐴𝐴𝑒𝑒−∫ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 . 

2. The solution to the non-homogeneous equation can be found by the method of variation 
of the constant. Rewrite the solution of the homogeneous equation by setting 𝐴𝐴 = 𝐴𝐴(𝑡𝑡) and 
𝑒𝑒−∫ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝑧𝑧(𝑡𝑡). 

𝑥𝑥 = 𝐴𝐴(𝑡𝑡) ∙ 𝑧𝑧(𝑡𝑡) . 



   

Use this in the non-homogeneous equation: 

𝐴̇𝐴𝑧𝑧 + 𝐴𝐴𝑧̇𝑧 + ℎ(𝑡𝑡)𝐴𝐴𝐴𝐴 = 𝑔𝑔(𝑡𝑡) 

𝐴̇𝐴𝑧𝑧 + 𝐴𝐴 ∙ (𝑧̇𝑧 + ℎ(𝑡𝑡)𝑧𝑧) = 𝑔𝑔(𝑡𝑡). 

The term in brackets vanishes since z is proportional to the solution of the homogeneous 
equation. Thus we have 

𝐴̇𝐴 =
𝑔𝑔(𝑡𝑡)
𝑧𝑧(𝑡𝑡)

. 

Integration yields 

𝐴𝐴 = �
𝑔𝑔(𝑡𝑡)
𝑧𝑧(𝑡𝑡)

𝑑𝑑𝑑𝑑 + 𝐴̃𝐴 = �
𝑔𝑔(𝑡𝑡)

𝑒𝑒−∫ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝐴̃𝐴, 

where 𝐴̃𝐴  is an integration constant. Thus we get as the general solution of the non-
homogeneous equation 

𝑥𝑥 = 𝑒𝑒−∫ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 ∙ �𝐴̃𝐴 + �
𝑔𝑔(𝑡𝑡)

𝑒𝑒−∫ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑�. 

3. The integration constant can be determined by inserting the known value of x on the left-
hand side and the corresponding time on the right-hand side.  

 

4.5 Phase diagrams for single differential equations and bifurcations 

Let the original differential equation be  𝑧̇𝑧 = 𝑔𝑔(𝑧𝑧, 𝑡𝑡). 

1. Find a transformation 𝑥𝑥 = 𝜑𝜑(𝑧𝑧, 𝑡𝑡) , such that the equation becomes autonomous:  
 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥). In economics, this is often done by multiplying x by an exponential function of 
time.2 

2. Draw an (𝒙𝒙,  𝒙̇𝒙 ) diagram with x on the horizontal axis and  𝑥̇𝑥 on the vertical axis and draw 
the 𝑓𝑓(𝑥𝑥) function into the diagram. If the function cuts the horizontal axis from above, the 
equilibrium is stable. If it cuts the horizontal axis from below, the equilibrium is unstable. 

3. To find bifurcations, change a parameter of the function 𝑓𝑓(𝑥𝑥) such that the function is 
shifted. If new equilibria emerge or if old ones vanish, there are bifurcations. 

4. To draw a bifurcation diagram, write the shift parameter on the horizontal axis and the 
equilibrium value(s) of x on the vertical axis. Use solid lines to characterise stable equilibria 
and dotted lines to characterise unstable equilibria. 

  

                                                        
2  The standard example in economics is Solow's growth model, where we divide by population and 

express all variable in per-capita terms. 



   

5  Systems of differential equations 

5.1  Systems of linear differential equations 

A system of linear differential equations is written as 

𝐱̇𝐱 = 𝐀𝐀𝐱𝐱 + 𝐠𝐠(𝑡𝑡) 

1. To find a particular solution to the non-homogeneous equation, assume that 𝐱𝐱�(𝑡𝑡) has the 
same shape as 𝐠𝐠(𝑡𝑡) , use this in the differential equation, and solve for the unknown 
parameters of  𝐱𝐱�(𝑡𝑡). If this involves a division by zero, multiply the solution candidate by t. 
A solution can usually be found only if the functions contained in 𝐠𝐠(𝑡𝑡) are of the same type. 

2. The solution of the homogeneous equation for the i-th variable is  

𝑥𝑥𝑖𝑖 = 𝐴𝐴1𝛽𝛽𝑖𝑖
(1)𝑒𝑒𝜆𝜆1 𝑡𝑡+ . . . +𝐴𝐴𝑛𝑛𝛽𝛽𝑖𝑖

(𝑛𝑛)𝑒𝑒𝜆𝜆𝑛𝑛 𝑡𝑡, 

where  𝜆𝜆𝑗𝑗  is the j-th eigenvalue and  𝛽𝛽𝑖𝑖
(𝑗𝑗) is the i-th component of the corresponding 

eigenvector of the matrix  A. Eigenvalues are determined by 

det(𝐀𝐀 −  𝜆𝜆𝐈𝐈) = 0, 

which involves solving a polynomial of degree n. Eigenvectors are then found by solving  

(𝐀𝐀 −  𝜆𝜆𝐈𝐈)𝛃𝛃 = 0 

and setting the first element of each eigenvector equal to 1: 

3. In the special case of a system of two equations, we have  

𝜆𝜆1,2 =
tr𝐀𝐀
2

± �(tr𝐀𝐀)2

4
− det𝐀𝐀. 

The solution of the homogeneous equation is 

𝑥𝑥1 = 𝐴𝐴1𝑒𝑒𝜆𝜆1𝑡𝑡 + 𝐴𝐴2𝑒𝑒𝜆𝜆2𝑡𝑡 

𝑥𝑥2 = 𝐴𝐴1
𝜆𝜆1 − 𝑎𝑎11
𝑎𝑎12

𝑒𝑒𝜆𝜆1𝑡𝑡 + 𝐴𝐴2
𝜆𝜆2 − 𝑎𝑎11
𝑎𝑎12

𝑒𝑒𝜆𝜆2𝑡𝑡. 

The system is stable if 𝜆𝜆1 < 0  and 𝜆𝜆2 < 0 . If the eigenvalues are complex, i.e. 
𝜆𝜆1,2 = 𝛼𝛼 ± 𝜃𝜃𝜃𝜃, where 𝑖𝑖 = √−1, then we have cyclical solutions: 

𝑥𝑥1 = 𝑒𝑒𝛼𝛼𝛼𝛼(𝐴𝐴1 cos 𝜃𝜃𝜃𝜃 + 𝐴𝐴2 sin𝜃𝜃𝜃𝜃) 

𝑥𝑥2 = 𝑒𝑒𝛼𝛼𝛼𝛼 �
(𝛼𝛼 − 𝑎𝑎11)𝐴𝐴1 + 𝜃𝜃𝐴𝐴2

𝑎𝑎12
cos 𝜃𝜃𝜃𝜃 +

(𝛼𝛼 − 𝑎𝑎11)𝐴𝐴2 + 𝜃𝜃𝐴𝐴1
𝑎𝑎12

sin𝜃𝜃𝜃𝜃�. 

The cyclical paths are stable if α < 0, i.e. if trA < 0.  

4. To find the general solution of the non-homogeneous equations, add the particular 
solution to the general solution of the homogeneous equation. For the i-th equation, we have  

𝑥𝑥𝑖𝑖 = 𝐴𝐴1𝛽𝛽𝑖𝑖
(1)𝑒𝑒𝜆𝜆1 𝑡𝑡+ . . . +𝐴𝐴𝑛𝑛𝛽𝛽𝑖𝑖

(𝑛𝑛)𝑒𝑒𝜆𝜆𝑛𝑛 𝑡𝑡 + 𝑥̅𝑥𝑖𝑖 , 



   

5. Finally determine the integration constants by inserting the known values of xi on the left-
hand side and the corresponding values of t on the right-hand side.  

 

 

5.2 Linearisation of nonlinear systems of differential equations and stability 
analysis 

A system of nonlinear differential equations can be linearised by using a first-order Taylor 
approximation. The i-th equation of the homogeneous system is 

𝑥̇𝑥𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 𝑡𝑡) 

1.  Determine the Jacobian matrix J with the elements 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
. 

2. The linerarised system is 𝐱̇𝐱 = 𝐉𝐉(𝐱𝐱 − 𝐱𝐱�). 

3. Stability is determined by the eigenvalues of J, where the results are only valid in a 
neighbourhood of the equilibrium. See Section 5.4 below for the stability conditions. 

 

 

5.3  Rules for stability of systems of two equations 

a) Real eigenvalues, 𝜆𝜆1 < 0 and 𝜆𝜆2 < 0. Stable node: non-cyclical paths. 

b) Real eigenvalues, 𝜆𝜆1 < 0 and 𝜆𝜆2 > 0. Saddle point: monotonous saddle path. 

c) Real eigenvalues, 𝜆𝜆1 > 0 and 𝜆𝜆2 > 0. Unstable node, non-cyclical paths. 

d) Complex eigenvalues, negative real parts. Stable focus, cyclical paths. 

e) Complex eigenvalues, zero real parts. Closed orbits. 

f) Complex eigenvalues, positive real parts. Unstable node: cyclical paths. 

 

5.5 Generalisation of the rules for general systems of equations 

a) If there are complex eigenvalues, the solution is cyclical. 

b) If all real eigenvalues are negative and all complex eigenvalues have negative real parts, 
the system is stable. 

c) If k eigenvalues are negative or have negative real parts and n – k eigenvalues are 
positive or have positive real parts, there is a k-dimensional stable manifold, leading to 
the equilibrium. For the system to be on this manifold, only k starting values of x can 
be chosen arbitrarily. The remaining and n – k ones have to take specific values. 



   

5.6 Phase diagrams for systems of two equations. 

The system to be considered is 

𝑥̇𝑥1 = 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2) 

𝑥̇𝑥2 = 𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2) 

1. Phase diagrams can be drawn only for autonomous systems like the one above. If the system 
is non-autonomous, it needs to be transformed into an autonomous system via a 
transformation of variables. In economic models, the non-autonomous part of a differential 
equation often consists of an exponential function of time. The original variables are then 
transformed by multiplying them by an exponential function of time. In models with 
population growth is this is done by moving to per-capita variables. 

2. Draw an (𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐) diagram with x1 on the horizontal axis and x2 on the vertical axis. Of 
course, this can be reversed if appropriate. 

3. Draw the isoclines 𝑥̇𝑥1 = 0 and 𝑥̇𝑥2 = 0. If 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2) or 𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2) are implicit functions, 
use the implicit-function theorem to determine the shape of the isoclines. 

4.  Equilibria are determined by 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓2(𝑥𝑥1,𝑥𝑥2) = 0 . In the case on nonlinear 
functions, there may be multiple equilibria. 

5. Draw arrows that visualise the movements in horizontal and vertical direction. Draw 
horizontal-vertical combinations of these arrows into all sectors that are separated from each 
other by isoclines. 

6. Visualise the direction of motion of trajectories crossing the isoclines. Where do they 
come from, where do they go? In the intersection points with the 𝑥̇𝑥1 = 0  isocline, all 
trajectories are vertical. In the intersection points with the 𝑥̇𝑥2 = 0  isocline, they are 
horizontal. 

7. From this information one may infer the stability pattern: cyclical vs. non-cyclical, stable 
vs. unstable, and if unstable saddle path or complete instability. Caveat: foci and nodes are 
not always easily distinguished. A formal stability analysis using the eigenvalues of the 
Jacobian may be helpful. 

 

  



   

 

6 Dynamic optimisation and Pontryagin's maximum principle 

The problem is to maximise 

�  𝑒𝑒−𝜌𝜌𝜌𝜌𝑓𝑓(𝑥𝑥, 𝑢𝑢)𝑑𝑑𝑑𝑑 + 𝑒𝑒−𝜌𝜌𝜌𝜌𝐹𝐹�𝑥𝑥(𝑇𝑇)�
𝑇𝑇

0
 

with respect to 𝑢𝑢(𝑡𝑡) and – possibly – with respect to T and subject to 

𝑥̇𝑥 = 𝑔𝑔(𝑥𝑥,𝑢𝑢), 

𝑥𝑥(0) = 𝑥𝑥. 

x and u may be vectors. 𝑓𝑓(𝑥𝑥,𝑢𝑢) and 𝑔𝑔(𝑥𝑥, 𝑢𝑢) are assumed to be concave. 

1. Write the current-value Hamiltonian  

𝐻𝐻 = 𝑓𝑓(𝑥𝑥,𝑢𝑢) + 𝜆𝜆𝑔𝑔(𝑥𝑥,𝑢𝑢), 

If x is a vector of length n, there will be a vector λ  of costate variables of length n as well. 

2. Determine the optimality conditions, i.e. the first-order condition(s) with respect to u and 
the canonical equation(s): 

𝐻𝐻𝑢𝑢 = 0. 

𝜆̇𝜆 = 𝜌𝜌𝜆𝜆 − 𝐻𝐻𝑥𝑥  

If u is a vector of length k, there will be k optimality conditions. If x is a vector of length n, 
there will be n canonical equations. 

3. Eliminate the costate variable(s).  

3.1 Differentiate the first-order condition with respect to time. This gives an equation 
in which 𝜆̇𝜆 occurs.  

3.2 Use the canonical equation to eliminate 𝝀̇𝝀. 

3.3 Insert for λ from the first-order condition to eliminate λ. 

The result is a differential equation  𝑢̇𝑢 = 𝜑𝜑(𝑥𝑥,𝑢𝑢). This equation may be quite complex if 
the functions 𝑓𝑓(𝑥𝑥,𝑢𝑢) and 𝑔𝑔(𝑥𝑥,𝑢𝑢) contain interactions terms of x and u. Then there will be 
cross derivatives and they complicate the remainder of the analysis. 

4. To determine the equilibrium, set 𝑥̇𝑥 = 0 and 𝑢̇𝑢 = 0. The 𝑢̇𝑢 = 0 condition often has the 
economic interpretation of a capital-market equilibrium condition or an arbitrage condition. 
Note that the equilibrium is not always unique. 

5. To represent the solution, draw a phase diagram in the (𝑥𝑥,𝑢𝑢) space with x on the horizontal 
axis and u on the vertical axis. Proceed as follows 

• Start with the isoclines.  

• Then draw the rectangular combination of arrows indicating horizontal and 
vertical motion.  



   

• Then add parts of the trajectories where they cross the isoclines.  

• Finally draw the saddle path (if there is one). 

6. Several possibilities exist regarding the time horizon and the termination of the programme. 

6.1 If the time horizon is infinite and if the Hamiltonian is strictly concave in (x,u), the 
optimal solution is the saddle path and the control variable "jumps" onto the saddle path 
at t=0. 

6.2 If the time horizon is finite and if the final state is evaluated by 𝑒𝑒−𝜌𝜌𝜌𝜌𝐹𝐹�𝑥𝑥(𝑇𝑇)�, then 
𝜆𝜆(𝑇𝑇) = 𝐹𝐹′�𝑥𝑥(𝑇𝑇)�. Inserting for 𝜆𝜆(𝑇𝑇) from the first-order condition gives a relationship 
between x(T) and u(T) that can be represented as a line in the (x,u) space. The optimal 
path is the trajectory connecting the vertical x=x0 line with this line within the given time 
T. 

6.3 If the time horizon is endogenous and if the final state is evaluated, the terminal 
conditions are  𝐻𝐻(𝑇𝑇) − 𝜌𝜌𝜌𝜌�𝑥𝑥(𝑇𝑇)� = 0  and  𝜆𝜆(𝑇𝑇) = 𝐹𝐹′�𝑥𝑥(𝑇𝑇)�. Using these conditions, λ 
can be eliminated. This gives a point in the (x,u) space. The optimal path ends in this 
point. The optimal duration of the programme is determined by the time needed to move 
from the x=x0 line to this termination point.  

6.4 If the time horizon is endogenous and if the final state is not evaluated, the terminal 
conditions are  𝐻𝐻(𝑇𝑇) = 0  and  𝑒𝑒−𝜌𝜌𝜌𝜌𝜆𝜆(𝑇𝑇) = 0. There are models in which the second 
condition holds only for 𝑇𝑇 → ∞. 
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1 Solution of an n-th order linear difference equation 

6. Write the equation in the following form: 

  xt + a1 xt-1 + ….. + an xt-n = g(t). 

7. Find the particular solution to the non-homogeneous equation. 

7.1 Assume that the solution is 𝑥̅𝑥𝑡𝑡 = ℎ(𝑡𝑡), where h(t) "resembles" g(t).  

E.g., if g(t)=gt, use 𝑥̅𝑥𝑡𝑡 = ℎ𝑡𝑡.  

7.2 Solve the resulting equation for the parameter(s) of h(t). 

7.3 If the solution involves a division by zero, use 𝑥̅𝑥𝑡𝑡 = 𝑡𝑡ℎ(𝑡𝑡). If this dos not help, use 
𝑥̅𝑥𝑡𝑡 = 𝑡𝑡2ℎ(𝑡𝑡), and so on .... 

7.4 The particular solution can be interpreted as a long-run equilibrium. 

8. Find the solution of the homogeneous equation 

8.1 Assume that the solution is 𝑥̅𝑥𝑡𝑡 = 𝜆𝜆𝑡𝑡 . Thus: 

      λt + a1λt-1 + ….. + an λt-n = 0, 

3.2 Rewrite this as 

𝜆𝜆𝑡𝑡−𝑛𝑛(𝜆𝜆𝑛𝑛 + a1𝜆𝜆𝑛𝑛−1 +  … + a𝑛𝑛−1𝜆𝜆 + a𝑛𝑛) = 0 

3.3 Solve the characteristic equation 

𝜆𝜆𝑛𝑛 + a1𝜆𝜆𝑛𝑛−1 +  … + a𝑛𝑛−1𝜆𝜆 + a𝑛𝑛 =  0. 

3.4 The solution of the difference equation is a linear combination of all possible 
solutions, λi  

𝑥𝑥𝑡𝑡 = 𝐴𝐴1𝜆𝜆1𝑡𝑡 +  … . +𝐴𝐴𝑛𝑛𝜆𝜆𝑛𝑛𝑡𝑡 . 

In the case of a quadratic characteristic equation, a negative discriminate may lead to 
conjugate complex solutions. Then   

𝑥𝑥𝑡𝑡 = 𝑎𝑎2
𝑡𝑡/2(𝐴𝐴1 cos𝜔𝜔 𝑡𝑡 + 𝐴𝐴2 sin𝜔𝜔 𝑡𝑡). 

with 

cos𝜔𝜔 =
𝑎𝑎1

2√𝑎𝑎2
   ,   sin𝜔𝜔 = �1 −

𝑎𝑎12

4𝑎𝑎2 

 

  .  

9. Stability: The λi with the largest absolute value determines the stability behavior of the 
equation in the long run: stable if |𝜆𝜆i𝑚𝑚𝑚𝑚𝑚𝑚  | < 1 ,  unstable if  |𝜆𝜆i𝑚𝑚𝑚𝑚𝑚𝑚  | > 1. 

10. To find the general solution to the non-homogeneous equation, write 

𝑥𝑥𝑡𝑡 = 𝐴𝐴1𝜆𝜆1𝑡𝑡 +  … . +𝐴𝐴𝑛𝑛𝜆𝜆𝑛𝑛𝑡𝑡 + 𝑥̅𝑥𝑡𝑡. 

and use the information on particular values of xt at n different points in time to 
determine the Ais. 



   

5 Solution of a system of linear difference equations 

The system is given as a set of n equations, the i-th equation being 

xit = ai1 x1t-1 + ….. + ain xnt-1 + gi(t). 

4. Write the system in matrix form 

𝐱𝐱𝐭𝐭 = 𝐀𝐀𝐱𝐱𝐭𝐭−𝟏𝟏 + 𝐠𝐠(𝑡𝑡) 

with 

𝐱𝐱𝐭𝐭 = �
𝑥𝑥1𝑡𝑡
⋮
𝑥𝑥𝑛𝑛𝑛𝑛

� , 𝐀𝐀 = �
𝑎𝑎11 … 𝑎𝑎1𝑛𝑛
⋮ ⋮
𝑎𝑎𝑛𝑛1 … 𝑎𝑎𝑛𝑛𝑛𝑛

� , 𝐠𝐠(𝑡𝑡) = �
𝑔𝑔1(𝑡𝑡)
⋮

𝑔𝑔𝑛𝑛(𝑡𝑡)
�. 

5. Note that finding a particular solution is often impossible if the gi functions are of different 
types. Find the particular solution 𝐱𝐱�𝐭𝐭 by assuming that 𝐱𝐱�𝐭𝐭has the same shape as 𝐠𝐠(𝑡𝑡).  If for 
example there is a vector of exponential functions, 𝐠𝐠(𝑡𝑡)  = (1 + 𝛿𝛿)𝑡𝑡𝐠𝐠, where g is a vector 
of constants, then try 𝐱𝐱�𝐭𝐭 = (1 + 𝛿𝛿)𝑡𝑡𝛄𝛄 as a particular solution, where the 𝛄𝛄 is a vector of 
unknown constants. Using this in the difference equation, we have 

𝛄𝛄 = �𝚰𝚰 −
𝐀𝐀

1 + 𝛿𝛿
�
−1

𝐠𝐠. 

Alternatively one may prefer to write a system of n equations and solve it for the γis by 
Cramer's rule. If |(1 + 𝛿𝛿)𝚰𝚰 − 𝐀𝐀| = 0, the system does not have a solution and we try 𝐱𝐱�𝒕𝒕 =
𝑡𝑡𝐱𝐱�. With other functions 𝐠𝐠(𝑡𝑡), proceed in an analogous fashion. 

6. Find the solution of the homogeneous equations by determining the eigenvalues of A. They 
can be found by solving  det(A – λI)=0. If n=2, they are  

𝜆𝜆1,2 =
tr(𝐀𝐀)

2
± ��

tr(𝐀𝐀)
2

�
2

− det (𝐀𝐀). 

In the general case of n equations, the solution of the homogeneous equations is  

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝐴𝐴1𝛽𝛽𝑖𝑖
(1)𝜆𝜆1𝑡𝑡+ . . . +𝐴𝐴𝑛𝑛𝛽𝛽𝑖𝑖

(𝑛𝑛)𝜆𝜆𝑛𝑛𝑡𝑡 , 

where 𝑖𝑖 = 1, … ,𝑛𝑛  and where 𝛽𝛽𝑖𝑖
(𝑗𝑗) denotes the i-th component of the eigenvector 

corresponding to the j-th eigenvalue. The first components of the eigenvectors are set equal 
to one:  𝛽𝛽1

(𝑗𝑗) = 1 ∀𝑗𝑗 = 1, … ,𝑛𝑛. In the two-equations case we have 

𝑥𝑥1𝑡𝑡 = 𝐴𝐴1𝜆𝜆1𝑡𝑡 + 𝐴𝐴2𝜆𝜆2𝑡𝑡 , 

𝑥𝑥2𝑡𝑡 = 𝐴𝐴1
𝜆𝜆1 − 𝑎𝑎11
𝑎𝑎12

𝜆𝜆1𝑡𝑡 + 𝐴𝐴2
𝜆𝜆2 − 𝑎𝑎11
𝑎𝑎12

𝜆𝜆2𝑡𝑡 . 

7. Write down the solution of the homogeneous equations adding  𝐱𝐱�𝒕𝒕 on the right-hand side.  

8. Determine the constants by inserting the known values of 𝐱𝐱𝐭𝐭 on the left-hand side and the 
corresponding values of t on the right-hand side. 

9. The system is stable if |𝜆𝜆𝑖𝑖| < 1 for all 𝑖𝑖 ∈ (0,𝑛𝑛). In the case of complex eigenvalues, |𝜆𝜆𝑖𝑖| =
√𝛼𝛼2 + 𝜃𝜃2, where α is the real part and θ is the imaginary part.  



   

6 Nonlinear difference equations and chaos in economic models 

4. To construct a phase diagram for a nonlinear difference equation, write xt on the vertical 
axis and xt-1  on the horizontal axis. Then draw xt = f(xt-1) and a 45° line into the diagram. 
Use f(xt-1) to determine  xt and use the 45° line to obtain the starting value for the next period 
from xt. 

5. Stability can be checked by determining the slope of f(xt-1) in the equilibrium. If the absolute 
value of the slope is larger than 1, the equilibrium is unstable. 

6. To construct a model that possibly generates chaos, specify the functions of the under-
lying economic model such that you get a hump-shaped transition function xt = f(xt-1). 

 

  



   

7 Differential equations 

4.1 Linear differential equations with constant coefficients 

Consider the differential equation: 

𝑥̇𝑥 + 𝑎𝑎𝑎𝑎 = 𝑔𝑔(𝑡𝑡). 3 

5. To find a particular solution of the non-homogeneous equation, assume that 𝑥̅𝑥(𝑡𝑡) has the 
same functional form as 𝑔𝑔(𝑡𝑡), e.g. constant, linear, or exponential. Then insert this into the 
differential equation such that 𝑥̇̅𝑥 + 𝑎𝑎𝑥̅𝑥 = 𝑔𝑔(𝑡𝑡). Solve it. Usually this can be done without 
integration. If the solution involves division by zero, multiply the solution candidate by t and 
try again. 

6. To solve the homogeneous part, rewrite it as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎. 

Multiply by 𝑑𝑑𝑑𝑑 and divide by x: 

𝑑𝑑𝑑𝑑
𝑥𝑥

= −𝑎𝑎𝑎𝑎𝑎𝑎. 

Integrate and obtain an equation which is logarithmic in x and linear in t. Solve this for x 

𝑥𝑥 = 𝐴𝐴 ∙ 𝑒𝑒−𝑎𝑎𝑎𝑎, 

where 𝐴𝐴 = 𝑒𝑒𝐴𝐴𝑡𝑡−𝐴𝐴𝑥𝑥. This is the solution of the homogeneous equation.  

7. The solution is stable if a > 0. 

8. Use a given 𝑥𝑥(𝑡𝑡∗) to eliminate the integration constant. 

 

 

8.2 Method of variation of the constant  

If the particular solution of the non-homogeneous equation cannot be found by the standard 
method, try this approach. 

4. Starting from the solution of the homogeneous equation, 𝑥𝑥 = 𝐴𝐴 ∙ 𝑒𝑒−𝑎𝑎𝑎𝑎, replace the constant 
A by a function of time, A(t). Use this in the original differential equation:  

𝐴̇𝐴 ∙ 𝑒𝑒−𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒−𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒−𝑎𝑎𝑎𝑎 = 𝑔𝑔(𝑡𝑡). 

The last two terms on the left-hand side cancel out and we have 

𝐴̇𝐴 = 𝑒𝑒𝑎𝑎𝑎𝑎𝑔𝑔(𝑡𝑡). 

                                                        
3  Sometimes a nonlinear differential equation can be transformed into a linear one, e.g in the case of 

Solows growth model, 𝑘̇𝑘 = 𝑠𝑠𝑘𝑘𝛼𝛼 − 𝑛𝑛𝑛𝑛. Replace k by 𝑧𝑧1/(1−𝛼𝛼) . Then 𝑧̇𝑧 = (1 − 𝛼𝛼)𝑠𝑠 − (1 − 𝛼𝛼)𝑛𝑛𝑧𝑧   . 



   

5. Integration then yields  

𝐴𝐴 = �𝑔𝑔(𝑡𝑡)𝑒𝑒𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑 + 𝐴̃𝐴, 

where 𝐴̃𝐴 is the new integration constant. We then have 

𝑥𝑥 = ��𝑔𝑔(𝑡𝑡)𝑒𝑒𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑 + 𝐴̃𝐴� 𝑒𝑒−𝑎𝑎𝑎𝑎. 

6. Solve this integral (if possible) and eliminate the integration constant by using a given 
𝑥𝑥(𝑡𝑡∗).  

 

 

4.3 Separable differential equations 

Consider a differential equation of the type  

𝑓𝑓(𝑥𝑥) ∙ 𝑥̇𝑥 = 𝑔𝑔(𝑡𝑡). 

3. Rewrite the equation by multiplying by 𝑑𝑑𝑑𝑑 and then integrating 

�𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑥𝑥 = �𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑡𝑡. 

4. Solve the integral, subtract one of the constants on both sides to obtain a single constant 
and eliminate the constant by using a given 𝑥𝑥(𝑡𝑡∗). 

 

 

4.4 Linear differential equations with time-varying coefficients 

The differential equation is 

𝑥̇𝑥 + ℎ(𝑡𝑡)𝑥𝑥 = 𝑔𝑔(𝑡𝑡). 

4. Let us initially look at the homogeneous equation and rewrite it 

𝑑𝑑𝑑𝑑
𝑥𝑥

= −ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑. 

Integration yields 

ln(𝑥𝑥) + 𝐴𝐴𝑥𝑥 = −�ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑡𝑡 

𝑥𝑥 = 𝐴𝐴𝑒𝑒−∫ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 . 

5. The solution to the non-homogeneous equation can be found by the method of variation 
of the constant. Rewrite the solution of the homogeneous equation by setting 𝐴𝐴 = 𝐴𝐴(𝑡𝑡) and 
𝑒𝑒−∫ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝑧𝑧(𝑡𝑡). 

𝑥𝑥 = 𝐴𝐴(𝑡𝑡) ∙ 𝑧𝑧(𝑡𝑡) . 



   

Use this in the non-homogeneous equation: 

𝐴̇𝐴𝑧𝑧 + 𝐴𝐴𝑧̇𝑧 + ℎ(𝑡𝑡)𝐴𝐴𝐴𝐴 = 𝑔𝑔(𝑡𝑡) 

𝐴̇𝐴𝑧𝑧 + 𝐴𝐴 ∙ (𝑧̇𝑧 + ℎ(𝑡𝑡)𝑧𝑧) = 𝑔𝑔(𝑡𝑡). 

The term in brackets vanishes since z is proportional to the solution of the homogeneous 
equation. Thus we have 

𝐴̇𝐴 =
𝑔𝑔(𝑡𝑡)
𝑧𝑧(𝑡𝑡)

. 

Integration yields 

𝐴𝐴 = �
𝑔𝑔(𝑡𝑡)
𝑧𝑧(𝑡𝑡)

𝑑𝑑𝑑𝑑 + 𝐴̃𝐴 = �
𝑔𝑔(𝑡𝑡)

𝑒𝑒−∫ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝐴̃𝐴, 

where 𝐴̃𝐴  is an integration constant. Thus we get as the general solution of the non-
homogeneous equation 

𝑥𝑥 = 𝑒𝑒−∫ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 ∙ �𝐴̃𝐴 + �
𝑔𝑔(𝑡𝑡)

𝑒𝑒−∫ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑�. 

6. The integration constant can be determined by inserting the known value of x on the left-
hand side and the corresponding time on the right-hand side.  

 

7.5 Phase diagrams for single differential equations and bifurcations 

Let the original differential equation be  𝑧̇𝑧 = 𝑔𝑔(𝑧𝑧, 𝑡𝑡). 

5. Find a transformation 𝑥𝑥 = 𝜑𝜑(𝑧𝑧, 𝑡𝑡) , such that the equation becomes autonomous:  
 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥). In economics, this is often done by multiplying x by an exponential function of 
time.4 

6. Draw an (𝒙𝒙,  𝒙̇𝒙 ) diagram with x on the horizontal axis and  𝑥̇𝑥 on the vertical axis and draw 
the 𝑓𝑓(𝑥𝑥) function into the diagram. If the function cuts the horizontal axis from above, the 
equilibrium is stable. If it cuts the horizontal axis from below, the equilibrium is unstable. 

7. To find bifurcations, change a parameter of the function 𝑓𝑓(𝑥𝑥) such that the function is 
shifted. If new equilibria emerge or if old ones vanish, there are bifurcations. 

8. To draw a bifurcation diagram, write the shift parameter on the horizontal axis and the 
equilibrium value(s) of x on the vertical axis. Use solid lines to characterise stable equilibria 
and dotted lines to characterise unstable equilibria. 

  

                                                        
4  The standard example in economics is Solow's growth model, where we divide by population and 

express all variable in per-capita terms. 



   

5  Systems of differential equations 

5.1  Systems of linear differential equations 

A system of linear differential equations is written as 

𝐱̇𝐱 = 𝐀𝐀𝐱𝐱 + 𝐠𝐠(𝑡𝑡) 

6. To find a particular solution to the non-homogeneous equation, assume that 𝐱𝐱�(𝑡𝑡) has the 
same shape as 𝐠𝐠(𝑡𝑡) , use this in the differential equation, and solve for the unknown 
parameters of  𝐱𝐱�(𝑡𝑡). If this involves a division by zero, multiply the solution candidate by t. 
A solution can usually be found only if the functions contained in 𝐠𝐠(𝑡𝑡) are of the same type. 

7. The solution of the homogeneous equation for the i-th variable is  

𝑥𝑥𝑖𝑖 = 𝐴𝐴1𝛽𝛽𝑖𝑖
(1)𝑒𝑒𝜆𝜆1 𝑡𝑡+ . . . +𝐴𝐴𝑛𝑛𝛽𝛽𝑖𝑖

(𝑛𝑛)𝑒𝑒𝜆𝜆𝑛𝑛 𝑡𝑡, 

where  𝜆𝜆𝑗𝑗  is the j-th eigenvalue and  𝛽𝛽𝑖𝑖
(𝑗𝑗) is the i-th component of the corresponding 

eigenvector of the matrix  A. Eigenvalues are determined by 

det(𝐀𝐀 −  𝜆𝜆𝐈𝐈) = 0, 

which involves solving a polynomial of degree n. Eigenvectors are then found by solving  

(𝐀𝐀 −  𝜆𝜆𝐈𝐈)𝛃𝛃 = 0 

and setting the first element of each eigenvector equal to 1: 

8. In the special case of a system of two equations, we have  

𝜆𝜆1,2 =
tr𝐀𝐀
2

± �(tr𝐀𝐀)2

4
− det𝐀𝐀. 

The solution of the homogeneous equation is 

𝑥𝑥1 = 𝐴𝐴1𝑒𝑒𝜆𝜆1𝑡𝑡 + 𝐴𝐴2𝑒𝑒𝜆𝜆2𝑡𝑡 

𝑥𝑥2 = 𝐴𝐴1
𝜆𝜆1 − 𝑎𝑎11
𝑎𝑎12

𝑒𝑒𝜆𝜆1𝑡𝑡 + 𝐴𝐴2
𝜆𝜆2 − 𝑎𝑎11
𝑎𝑎12

𝑒𝑒𝜆𝜆2𝑡𝑡. 

The system is stable if 𝜆𝜆1 < 0  and 𝜆𝜆2 < 0 . If the eigenvalues are complex, i.e. 
𝜆𝜆1,2 = 𝛼𝛼 ± 𝜃𝜃𝜃𝜃, where 𝑖𝑖 = √−1, then we have cyclical solutions: 

𝑥𝑥1 = 𝑒𝑒𝛼𝛼𝛼𝛼(𝐴𝐴1 cos 𝜃𝜃𝜃𝜃 + 𝐴𝐴2 sin𝜃𝜃𝜃𝜃) 

𝑥𝑥2 = 𝑒𝑒𝛼𝛼𝛼𝛼 �
(𝛼𝛼 − 𝑎𝑎11)𝐴𝐴1 + 𝜃𝜃𝐴𝐴2

𝑎𝑎12
cos 𝜃𝜃𝜃𝜃 +

(𝛼𝛼 − 𝑎𝑎11)𝐴𝐴2 + 𝜃𝜃𝐴𝐴1
𝑎𝑎12

sin𝜃𝜃𝜃𝜃�. 

The cyclical paths are stable if α < 0, i.e. if trA < 0.  

9. To find the general solution of the non-homogeneous equations, add the particular 
solution to the general solution of the homogeneous equation. For the i-th equation, we have  

𝑥𝑥𝑖𝑖 = 𝐴𝐴1𝛽𝛽𝑖𝑖
(1)𝑒𝑒𝜆𝜆1 𝑡𝑡+ . . . +𝐴𝐴𝑛𝑛𝛽𝛽𝑖𝑖

(𝑛𝑛)𝑒𝑒𝜆𝜆𝑛𝑛 𝑡𝑡 + 𝑥̅𝑥𝑖𝑖 , 



   

10. Finally determine the integration constants by inserting the known values of xi on the 
left-hand side and the corresponding values of t on the right-hand side.  

 

 

5.2 Linearisation of nonlinear systems of differential equations and stability 
analysis 

A system of nonlinear differential equations can be linearised by using a first-order Taylor 
approximation. The i-th equation of the homogeneous system is 

𝑥̇𝑥𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 𝑡𝑡) 

1.  Determine the Jacobian matrix J with the elements 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
. 

2. The linerarised system is 𝐱̇𝐱 = 𝐉𝐉(𝐱𝐱 − 𝐱𝐱�). 

3. Stability is determined by the eigenvalues of J, where the results are only valid in a 
neighbourhood of the equilibrium. See Section 5.4 below for the stability conditions. 

 

 

5.3  Rules for stability of systems of two equations 

g) Real eigenvalues, 𝜆𝜆1 < 0 and 𝜆𝜆2 < 0. Stable node: non-cyclical paths. 

h) Real eigenvalues, 𝜆𝜆1 < 0 and 𝜆𝜆2 > 0. Saddle point: monotonous saddle path. 

i) Real eigenvalues, 𝜆𝜆1 > 0 and 𝜆𝜆2 > 0. Unstable node, non-cyclical paths. 

j) Complex eigenvalues, negative real parts. Stable focus, cyclical paths. 

k) Complex eigenvalues, zero real parts. Closed orbits. 

l) Complex eigenvalues, positive real parts. Unstable node: cyclical paths. 

 

5.5 Generalisation of the rules for general systems of equations 

d) If there are complex eigenvalues, the solution is cyclical. 

e) If all real eigenvalues are negative and all complex eigenvalues have negative real parts, 
the system is stable. 

f) If k eigenvalues are negative or have negative real parts and n – k eigenvalues are 
positive or have positive real parts, there is a k-dimensional stable manifold, leading to 
the equilibrium. For the system to be on this manifold, only k starting values of x can 
be chosen arbitrarily. The remaining and n – k ones have to take specific values. 



   

5.6 Phase diagrams for systems of two equations. 

The system to be considered is 

𝑥̇𝑥1 = 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2) 

𝑥̇𝑥2 = 𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2) 

1. Phase diagrams can be drawn only for autonomous systems like the one above. If the system 
is non-autonomous, it needs to be transformed into an autonomous system via a 
transformation of variables. In economic models, the non-autonomous part of a differential 
equation often consists of an exponential function of time. The original variables are then 
transformed by multiplying them by an exponential function of time. In models with 
population growth is this is done by moving to per-capita variables. 

2. Draw an (𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐) diagram with x1 on the horizontal axis and x2 on the vertical axis. Of 
course, this can be reversed if appropriate. 

3. Draw the isoclines 𝑥̇𝑥1 = 0 and 𝑥̇𝑥2 = 0. If 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2) or 𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2) are implicit functions, 
use the implicit-function theorem to determine the shape of the isoclines. 

4.  Equilibria are determined by 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓2(𝑥𝑥1,𝑥𝑥2) = 0 . In the case on nonlinear 
functions, there may be multiple equilibria. 

5. Draw arrows that visualise the movements in horizontal and vertical direction. Draw 
horizontal-vertical combinations of these arrows into all sectors that are separated from each 
other by isoclines. 

6. Visualise the direction of motion of trajectories crossing the isoclines. Where do they 
come from, where do they go? In the intersection points with the 𝑥̇𝑥1 = 0  isocline, all 
trajectories are vertical. In the intersection points with the 𝑥̇𝑥2 = 0  isocline, they are 
horizontal. 

7. From this information one may infer the stability pattern: cyclical vs. non-cyclical, stable 
vs. unstable, and if unstable saddle path or complete instability. Caveat: foci and nodes are 
not always easily distinguished. A formal stability analysis using the eigenvalues of the 
Jacobian may be helpful. 

 

  



   

 

7 Dynamic optimisation and Pontryagin's maximum principle 

The problem is to maximise 

�  𝑒𝑒−𝜌𝜌𝜌𝜌𝑓𝑓(𝑥𝑥, 𝑢𝑢)𝑑𝑑𝑑𝑑 + 𝑒𝑒−𝜌𝜌𝜌𝜌𝐹𝐹�𝑥𝑥(𝑇𝑇)�
𝑇𝑇

0
 

with respect to 𝑢𝑢(𝑡𝑡) and – possibly – with respect to T and subject to 

𝑥̇𝑥 = 𝑔𝑔(𝑥𝑥,𝑢𝑢), 

𝑥𝑥(0) = 𝑥𝑥. 

x and u may be vectors. 𝑓𝑓(𝑥𝑥,𝑢𝑢) and 𝑔𝑔(𝑥𝑥, 𝑢𝑢) are assumed to be concave. 

7. Write the current-value Hamiltonian  

𝐻𝐻 = 𝑓𝑓(𝑥𝑥,𝑢𝑢) + 𝜆𝜆𝑔𝑔(𝑥𝑥,𝑢𝑢), 

If x is a vector of length n, there will be a vector λ  of costate variables of length n as well. 

8. Determine the optimality conditions, i.e. the first-order condition(s) with respect to u and 
the canonical equation(s): 

𝐻𝐻𝑢𝑢 = 0. 

𝜆̇𝜆 = 𝜌𝜌𝜆𝜆 − 𝐻𝐻𝑥𝑥  

If u is a vector of length k, there will be k optimality conditions. If x is a vector of length n, 
there will be n canonical equations. 

9. Eliminate the costate variable(s).  

9.1 Differentiate the first-order condition with respect to time. This gives an equation 
in which 𝜆̇𝜆 occurs.  

9.2 Use the canonical equation to eliminate 𝝀̇𝝀. 

9.3 Insert for λ from the first-order condition to eliminate λ. 

The result is a differential equation  𝑢̇𝑢 = 𝜑𝜑(𝑥𝑥,𝑢𝑢). This equation may be quite complex if 
the functions 𝑓𝑓(𝑥𝑥,𝑢𝑢) and 𝑔𝑔(𝑥𝑥,𝑢𝑢) contain interactions terms of x and u. Then there will be 
cross derivatives and they complicate the remainder of the analysis. 

10. To determine the equilibrium, set 𝑥̇𝑥 = 0 and 𝑢̇𝑢 = 0. The 𝑢̇𝑢 = 0 condition often has 
the economic interpretation of a capital-market equilibrium condition or an arbitrage 
condition. Note that the equilibrium is not always unique. 

11. To represent the solution, draw a phase diagram in the (𝑥𝑥,𝑢𝑢) space with x on the 
horizontal axis and u on the vertical axis. Proceed as follows 

• Start with the isoclines.  

• Then draw the rectangular combination of arrows indicating horizontal and 
vertical motion.  



   

• Then add parts of the trajectories where they cross the isoclines.  

• Finally draw the saddle path (if there is one). 

12. Several possibilities exist regarding the time horizon and the termination of the pro-
gramme. 

12.1 If the time horizon is infinite and if the Hamiltonian is strictly concave in (x,u), the 
optimal solution is the saddle path and the control variable "jumps" onto the saddle path 
at t=0. 

12.2 If the time horizon is finite and if the final state is evaluated by 𝑒𝑒−𝜌𝜌𝜌𝜌𝐹𝐹�𝑥𝑥(𝑇𝑇)�, then 
𝜆𝜆(𝑇𝑇) = 𝐹𝐹′�𝑥𝑥(𝑇𝑇)�. Inserting for 𝜆𝜆(𝑇𝑇) from the first-order condition gives a relationship 
between x(T) and u(T) that can be represented as a line in the (x,u) space. The optimal 
path is the trajectory connecting the vertical x=x0 line with this line within the given time 
T. 

12.3 If the time horizon is endogenous and if the final state is evaluated, the terminal 
conditions are  𝐻𝐻(𝑇𝑇) − 𝜌𝜌𝜌𝜌�𝑥𝑥(𝑇𝑇)� = 0  and  𝜆𝜆(𝑇𝑇) = 𝐹𝐹′�𝑥𝑥(𝑇𝑇)�. Using these conditions, λ 
can be eliminated. This gives a point in the (x,u) space. The optimal path ends in this 
point. The optimal duration of the programme is determined by the time needed to move 
from the x=x0 line to this termination point.  

12.4 If the time horizon is endogenous and if the final state is not evaluated, the terminal 
conditions are  𝐻𝐻(𝑇𝑇) = 0  and  𝑒𝑒−𝜌𝜌𝜌𝜌𝜆𝜆(𝑇𝑇) = 0. There are models in which the second 
condition holds only for 𝑇𝑇 → ∞. 
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