
   

Klausur 

MSc Volkswirtschaftslehre  
"Dynamische Modelle in den Wirtschaftswissenschaften" 

Sommersemester 2019, 30.7.2018 

 

Lösen Sie zwei (und nicht mehr als zwei) der folgenden Aufgaben 1 – 5  

und außerdem die beiden Aufgaben 6 und 7. 

Die Gewichte bei der Bewertung sind 12,5% für jede der Aufgaben 1 – 5, 25% für die 

Aufgabe 6 und 50 % für die Aufgabe 7. 

 

 

1.  Lösen sie folgende Differenzengleichung und erläutern Sie den Rechenweg in kurzen 
Sätzen: 

xt + xt-1 = t  , x0 = 0 

 

2.  Eine Differentialgleichung erster Ordnung lautet �̇� =
𝑒−𝑟𝑡

2𝑥
  mit 𝑥(0) = 0. Lösen Sie 

die Gleichung! 

 

3. Betrachten Sie die Differentialgleichung �̇� = 𝑎 + 𝑥2  und zeichnen Sie das Phasen-
diagramm für a=0, a>0 und a<0. Zeichnen Sie dann das  Bifurkationsdiagramm. 

 

4. Zeichnen Sie ein Phasendiagramm für das Gleichungssystem �̇� = 𝐀(𝐱 − �̅�) für den 
Fall.  

𝐀 = (
2 0
2 −2

). 

Welche Eigenwerte erhält man? Um welchen Typ von Lösung (stabil, instabil, Fokus, 
Knoten, Sattelpfad …) handelt es sich? Weitere Erläuterungen sind nicht erforderlich. 

 

5. Zeichnen Sie ein Phasendiagramm für das Gleichungssystem �̇� = 𝐀(𝐱 − �̅�) für den Fall 

𝐀 = (
0 1
1 0

). 

Welche Eigenwerte erhält man? Um welchen Typ von Lösung (stabil, instabil, Fokus, 
Knoten, Sattelpfad …) handelt es sich? Weitere Erläuterungen sind nicht erforderlich. 

  



   

 

6 Nichtlineares Differentialgleichungssystem. Betrachten Sie ein Modell mit 
Unternehmen und Gewerkschaften. Wenn die Beschäftigung L(t) höher ist als die 
gleichgewichtige Beschäftigung, L*, können die Gewerkschaften Steigerungen des 
Lohns, w(t) durchsetzen. Die zeitliche Veränderung von w(t) und sei proportional zur 
Abweichung der aktuellen Beschäftigung von der gleichgewichtigen. Ebenso ist die 
zeitliche Änderung der Beschäftigung proportional zur Abweichung der Grenzpro-
duktivität, F'(L(t)), vom aktuellen Lohn. Die Grenzproduktivität nimmt bei steigender 
Beschäftigung ab. 

Schreiben Sie die beiden Differentialgleichungen des Modells auf, bestimmen Sie das 
Gleichgewicht, die Eigenwerte im Gleichgewicht, und zeichnen Sie ein Phasen-
diagramm. 

 

7  Dynamische Optimierung. Die Gewinne eines Unternehmens hängen ab vom Good-
will seiner Kundinnen und Kunden, G(t), und seinen Ausgaben für Werbung, E(t), so 

dass der Gegenwartswert des Gewinns ∫ 𝑒−𝑟𝑡(Π(𝐺(𝑡)) – 𝐸(𝑡))𝑑𝑡
∞

0
  ist.  sei steigend 

und streng konkav. Der Goodwill im Anfangszeitpunkt ist gegeben und entwickelt sich 
gemäß  �̇�(𝑡) = 𝐹(𝐸(𝑡)) − 𝛿𝐺(𝑡), wobei  > 0 und F steigend und streng konkav ist. 

a. Erstellen Sie die Hamiltonfunktion, schreiben Sie die Optimalitätsbedingungen auf 

und eliminieren Sie die Kozustandsvariable. . 

b. Erstellen Sie ein Phasendiagramm und zeigen Sie graphisch, dass die Lösung ein 

Sattelpfad ist. Erläutern Sie Ihr Vorgehen in wenigen Sätzen. Hinweis:  Die�̇� = 𝟎 – 

Isokline hat eine negative Steigung.  

  



   

1 Solution of an n-th order linear difference equation 

1. Write the equation in the following form: 

  xt + a1 xt-1 + ….. + an xt-n = g(t). 

2. Find the particular solution to the non-homogeneous equation. 

2.1 Assume that the solution is �̅�𝑡 = ℎ(𝑡), where h(t) "resembles" g(t).  

E.g., if g(t)=gt, use �̅�𝑡 = ℎ𝑡.  

2.2 Solve the resulting equation for the parameter(s) of h(t). 

2.3 If the solution involves a division by zero, use �̅�𝑡 = 𝑡ℎ(𝑡). If this dos not help, use 

�̅�𝑡 = 𝑡2ℎ(𝑡), and so on .... 

2.4 The particular solution can be interpreted as a long-run equilibrium. 

3. Find the solution of the homogeneous equation 

3.1 Assume that the solution is �̅�𝑡 = 𝜆𝑡  . Thus: 

      t + a1t-1 + ….. + an t-n = 0, 

3.2 Rewrite this as 

𝜆𝑡−𝑛(𝜆𝑛 + a1𝜆𝑛−1 +  … + a𝑛−1𝜆 + a𝑛) = 0 

3.3 Solve the characteristic equation 

𝜆𝑛 + a1𝜆𝑛−1 +  … + a𝑛−1𝜆 + a𝑛 =  0. 

3.4 The solution of the difference equation is a linear combination of all possible 

solutions, i  

𝑥𝑡 = 𝐴1𝜆1
𝑡 +  … . +𝐴𝑛𝜆𝑛

𝑡 . 

In the case of a quadratic characteristic equation, a negative discriminate may lead to 

conjugate complex solutions. Then   

𝑥𝑡 = 𝑎2
𝑡/2(𝐴1 cos 𝜔 𝑡 + 𝐴2 sin 𝜔 𝑡). 

with 

cos 𝜔 =
𝑎1

2√𝑎2

   ,   sin 𝜔 = √1 −
𝑎1

2

4𝑎2 

 

  .  

4. Stability: The i with the largest absolute value determines the stability behavior of the 

equation in the long run: stable if |𝜆i
𝑚𝑎𝑥  | < 1 ,  unstable if  |𝜆i

𝑚𝑎𝑥  | > 1. 

5. To find the general solution to the non-homogeneous equation, write 

𝑥𝑡 = 𝐴1𝜆1
𝑡 +  … . +𝐴𝑛𝜆𝑛

𝑡 + �̅�𝑡. 

and use the information on particular values of xt at n different points in time to 

determine the Ais. 



   

2 Solution of a system of linear difference equations 

The system is given as a set of n equations, the i-th equation being 

xit = ai1 x1t-1 + ….. + ain xnt-1 + gi(t). 

1. Write the system in matrix form 

𝐱𝐭 = 𝐀𝐱𝐭−𝟏 + 𝐠(𝑡) 

with 

𝐱𝐭 = (

𝑥1𝑡

⋮
𝑥𝑛𝑡

) , 𝐀 = (

𝑎11 … 𝑎1𝑛

⋮ ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

) , 𝐠(𝑡) = (
𝑔1(𝑡)

⋮
𝑔𝑛(𝑡)

). 

2. Note that finding a particular solution is often impossible if the gi functions are of different 

types. Find the particular solution �̅�𝐭 by assuming that �̅�𝐭has the same shape as 𝐠(𝑡).  If for 

example there is a vector of exponential functions, 𝐠(𝑡)  = (1 + 𝛿)𝑡𝐠, where g is a vector 

of constants, then try �̅�𝐭 = (1 + 𝛿)𝑡𝛄 as a particular solution, where the 𝛄 is a vector of 

unknown constants. Using this in the difference equation, we have 

𝛄 = (𝚰 −
𝐀

1 + 𝛿
)

−1

𝐠. 

Alternatively one may prefer to write a system of n equations and solve it for the is by 

Cramer's rule. If |(1 + 𝛿)𝚰 − 𝐀| = 0, the system does not have a solution and we try �̅�𝒕 =

𝑡�̅�. With other functions 𝐠(𝑡), proceed in an analogous fashion. 

3. Find the solution of the homogeneous equations by determining the eigenvalues of A. They 

can be found by solving  det(A – I)=0. If n=2, they are  

𝜆1,2 =
tr(𝐀)

2
± √(

tr(𝐀)

2
)

2

− det (𝐀). 

In the general case of n equations, the solution of the homogeneous equations is  

𝑥𝑖𝑡 = 𝐴1𝛽𝑖
(1)

𝜆1
𝑡 + . . . +𝐴𝑛𝛽𝑖

(𝑛)
𝜆𝑛

𝑡 , 

where 𝑖 = 1, … , 𝑛  and where 𝛽𝑖
(𝑗)

denotes the i-th component of the eigenvector 

corresponding to the j-th eigenvalue. The first components of the eigenvectors are set equal 

to one:  𝛽1
(𝑗)

= 1 ∀𝑗 = 1, … , 𝑛. In the two-equations case we have 

𝑥1𝑡 = 𝐴1𝜆1
𝑡 + 𝐴2𝜆2

𝑡 , 

𝑥2𝑡 = 𝐴1

𝜆1 − 𝑎11

𝑎12
𝜆1

𝑡 + 𝐴2

𝜆2 − 𝑎11

𝑎12
𝜆2

𝑡 . 

4. Write down the solution of the homogeneous equations adding  �̅�𝒕 on the right-hand side.  

5. Determine the constants by inserting the known values of 𝐱𝐭 on the left-hand side and the 

corresponding values of t on the right-hand side. 

6. The system is stable if |𝜆𝑖| < 1 for all 𝑖 ∈ (0, 𝑛). In the case of complex eigenvalues, |𝜆𝑖| =

√𝛼2 + 𝜃2, where  is the real part and  is the imaginary part.  



   

3 Nonlinear difference equations and chaos in economic models 

1. To construct a phase diagram for a nonlinear difference equation, write xt on the vertical 

axis and xt-1  on the horizontal axis. Then draw xt = f(xt-1) and a 45° line into the diagram. 

Use f(xt-1) to determine  xt and use the 45° line to obtain the starting value for the next period 

from xt. 

2. Stability can be checked by determining the slope of f(xt-1) in the equilibrium. If the absolute 

value of the slope is larger than 1, the equilibrium is unstable. 

3. To construct a model that possibly generates chaos, specify the functions of the under-

lying economic model such that you get a hump-shaped transition function xt = f(xt-1). 

 

  



   

4 Differential equations 

4.1 Linear differential equations with constant coefficients 

Consider the differential equation: 

�̇� + 𝑎𝑥 = 𝑔(𝑡). 1 

1. To find a particular solution of the non-homogeneous equation, assume that �̅�(𝑡) has the 

same functional form as 𝑔(𝑡), e.g. constant, linear, or exponential. Then insert this into the 

differential equation such that �̇̅� + 𝑎�̅� = 𝑔(𝑡). Solve it. Usually this can be done without 

integration. If the solution involves division by zero, multiply the solution candidate by t and 

try again. 

2. To solve the homogeneous part, rewrite it as: 

𝑑𝑥

𝑑𝑡
= −𝑎𝑥. 

Multiply by 𝑑𝑡 and divide by x: 

𝑑𝑥

𝑥
= −𝑎𝑑𝑡. 

Integrate and obtain an equation which is logarithmic in x and linear in t. Solve this for x 

𝑥 = 𝐴 ∙ 𝑒−𝑎𝑡 , 

where 𝐴 = 𝑒𝐴𝑡−𝐴𝑥 . This is the solution of the homogeneous equation.  

3. The solution is stable if a > 0. 

4. Use a given 𝑥(𝑡∗) to eliminate the integration constant. 

 

 

4.2 Method of variation of the constant  

If the particular solution of the non-homogeneous equation cannot be found by the standard 

method, try this approach. 

1. Starting from the solution of the homogeneous equation, 𝑥 = 𝐴 ∙ 𝑒−𝑎𝑡, replace the constant 

A by a function of time, A(t). Use this in the original differential equation:  

�̇� ∙ 𝑒−𝑎𝑡 − 𝑎𝐴 ∙ 𝑒−𝑎𝑡 + 𝑎𝐴 ∙ 𝑒−𝑎𝑡 = 𝑔(𝑡). 

The last two terms on the left-hand side cancel out and we have 

�̇� = 𝑒𝑎𝑡𝑔(𝑡). 

                                                        
1  Sometimes a nonlinear differential equation can be transformed into a linear one, e.g in the case of 

Solows growth model, �̇� = 𝑠𝑘𝛼 − 𝑛𝑘. Replace k by 𝑧1/(1−𝛼) 
. Then �̇� = (1 − 𝛼)𝑠 − (1 − 𝛼)𝑛𝑧  . 



   

2. Integration then yields  

𝐴 = ∫ 𝑔(𝑡)𝑒𝑎𝑡 𝑑𝑡 + �̃�, 

where �̃� is the new integration constant. We then have 

𝑥 = (∫ 𝑔(𝑡)𝑒𝑎𝑡 𝑑𝑡 + �̃�) 𝑒−𝑎𝑡 . 

3. Solve this integral (if possible) and eliminate the integration constant by using a given 

𝑥(𝑡∗).  

 

 

4.3 Separable differential equations 

Consider a differential equation of the type  

𝑓(𝑥) ∙ �̇� = 𝑔(𝑡). 

1. Rewrite the equation by multiplying by 𝑑𝑡 and then integrating 

∫ 𝑓(𝑥)𝑑𝑥 + 𝐴𝑥 = ∫ 𝑔(𝑡)𝑑𝑡 + 𝐴𝑡. 

2. Solve the integral, subtract one of the constants on both sides to obtain a single constant 

and eliminate the constant by using a given 𝑥(𝑡∗). 

 

 

4.4 Linear differential equations with time-varying coefficients 

The differential equation is 

�̇� + ℎ(𝑡)𝑥 = 𝑔(𝑡). 

1. Let us initially look at the homogeneous equation and rewrite it 

𝑑𝑥

𝑥
= −ℎ(𝑡)𝑑𝑡. 

Integration yields 

ln(𝑥) + 𝐴𝑥 = − ∫ ℎ(𝑡) 𝑑𝑡 + 𝐴𝑡 

𝑥 = 𝐴𝑒− ∫ ℎ(𝑡)𝑑𝑡 . 

2. The solution to the non-homogeneous equation can be found by the method of variation 

of the constant. Rewrite the solution of the homogeneous equation by setting 𝐴 = 𝐴(𝑡) and 

𝑒− ∫ ℎ(𝑡)𝑑𝑡 = 𝑧(𝑡). 

𝑥 = 𝐴(𝑡) ∙ 𝑧(𝑡) . 



   

Use this in the non-homogeneous equation: 

�̇�𝑧 + 𝐴�̇� + ℎ(𝑡)𝐴𝑧 = 𝑔(𝑡) 

�̇�𝑧 + 𝐴 ∙ (�̇� + ℎ(𝑡)𝑧) = 𝑔(𝑡). 

The term in brackets vanishes since z is proportional to the solution of the homogeneous 

equation. Thus we have 

�̇� =
𝑔(𝑡)

𝑧(𝑡)
. 

Integration yields 

𝐴 = ∫
𝑔(𝑡)

𝑧(𝑡)
𝑑𝑡 + �̃� = ∫

𝑔(𝑡)

𝑒− ∫ ℎ(𝑡)𝑑𝑡
𝑑𝑡 + �̃�, 

where �̃�  is an integration constant. Thus we get as the general solution of the non-

homogeneous equation 

𝑥 = 𝑒− ∫ ℎ(𝑡)𝑑𝑡 ∙ (�̃� + ∫
𝑔(𝑡)

𝑒− ∫ ℎ(𝑡)𝑑𝑡
𝑑𝑡). 

3. The integration constant can be determined by inserting the known value of x on the left-

hand side and the corresponding time on the right-hand side.  

 

4.5 Phase diagrams for single differential equations and bifurcations 

Let the original differential equation be  �̇� = 𝑔(𝑧, 𝑡). 

1. Find a transformation 𝑥 = 𝜑(𝑧, 𝑡) , such that the equation becomes autonomous:  

 �̇� = 𝑓(𝑥). In economics, this is often done by multiplying x by an exponential function of 

time.2 

2. Draw an (𝒙,  �̇� ) diagram with x on the horizontal axis and  �̇� on the vertical axis and draw 

the 𝑓(𝑥) function into the diagram. If the function cuts the horizontal axis from above, the 

equilibrium is stable. If it cuts the horizontal axis from below, the equilibrium is unstable. 

3. To find bifurcations, change a parameter of the function 𝑓(𝑥) such that the function is 

shifted. If new equilibria emerge or if old ones vanish, there are bifurcations. 

4. To draw a bifurcation diagram, write the shift parameter on the horizontal axis and the 

equilibrium value(s) of x on the vertical axis. Use solid lines to characterise stable equilibria 

and dotted lines to characterise unstable equilibria. 

  

                                                        
2  The standard example in economics is Solow's growth model, where we divide by population and 

express all variable in per-capita terms. 



   

5  Systems of differential equations 

5.1  Systems of linear differential equations 

A system of linear differential equations is written as 

�̇� = 𝐀𝐱 + 𝐠(𝑡) 

1. To find a particular solution to the non-homogeneous equation, assume that �̅�(𝑡) has the 

same shape as 𝐠(𝑡) , use this in the differential equation, and solve for the unknown 

parameters of  �̅�(𝑡). If this involves a division by zero, multiply the solution candidate by t. 

A solution can usually be found only if the functions contained in 𝐠(𝑡) are of the same type. 

2. The solution of the homogeneous equation for the i-th variable is  

𝑥𝑖 = 𝐴1𝛽𝑖
(1)

𝑒𝜆1
 𝑡+ . . . +𝐴𝑛𝛽𝑖

(𝑛)
𝑒𝜆𝑛

 𝑡 , 

where  𝜆𝑗
  is the j-th eigenvalue and  𝛽𝑖

(𝑗)
is the i-th component of the corresponding 

eigenvector of the matrix  A. Eigenvalues are determined by 

det(𝐀 −  𝜆𝐈) = 0, 

which involves solving a polynomial of degree n. Eigenvectors are then found by solving  

(𝐀 −  𝜆𝐈)𝛃 = 0 

and setting the first element of each eigenvector equal to 1: 

3. In the special case of a system of two equations, we have  

𝜆1,2 =
tr𝐀

2
± √

(tr𝐀)2

4
− det𝐀. 

The solution of the homogeneous equation is 

𝑥1 = 𝐴1𝑒𝜆1𝑡 + 𝐴2𝑒𝜆2𝑡 

𝑥2 = 𝐴1

𝜆1 − 𝑎11

𝑎12
𝑒𝜆1𝑡 + 𝐴2

𝜆2 − 𝑎11

𝑎12
𝑒𝜆2𝑡 . 

The system is stable if 𝜆1 < 0  and 𝜆2 < 0 . If the eigenvalues are complex, i.e. 

𝜆1,2 = 𝛼 ± 𝜃𝑖, where 𝑖 = √−1, then we have cyclical solutions: 

𝑥1 = 𝑒𝛼𝑡(𝐴1 cos 𝜃𝑡 + 𝐴2 sin 𝜃𝑡) 

𝑥2 = 𝑒𝛼𝑡 (
(𝛼 − 𝑎11)𝐴1 + 𝜃𝐴2

𝑎12
cos 𝜃𝑡 +

(𝛼 − 𝑎11)𝐴2 + 𝜃𝐴1

𝑎12
sin 𝜃𝑡). 

The cyclical paths are stable if  < 0, i.e. if trA < 0.  

4. To find the general solution of the non-homogeneous equations, add the particular 

solution to the general solution of the homogeneous equation. For the i-th equation, we have  

𝑥𝑖 = 𝐴1𝛽𝑖
(1)

𝑒𝜆1
 𝑡+ . . . +𝐴𝑛𝛽𝑖

(𝑛)
𝑒𝜆𝑛

 𝑡 + �̅�𝑖, 



   

5. Finally determine the integration constants by inserting the known values of xi on the left-

hand side and the corresponding values of t on the right-hand side.  

 

 

5.2 Linearisation of nonlinear systems of differential equations and stability 

analysis 

A system of nonlinear differential equations can be linearised by using a first-order Taylor 

approximation. The i-th equation of the homogeneous system is 

�̇�𝑖 = 𝑓𝑖(𝑥1, … , 𝑥𝑛 , 𝑡) 

1.  Determine the Jacobian matrix J with the elements 𝑎𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
. 

2. The linerarised system is �̇� = 𝐉(𝐱 − �̅�). 

3. Stability is determined by the eigenvalues of J, where the results are only valid in a 

neighbourhood of the equilibrium. See Section 5.4 below for the stability conditions. 

 

 

5.3  Rules for stability of systems of two equations 

a) Real eigenvalues, 𝜆1 < 0 and 𝜆2 < 0. Stable node: non-cyclical paths. 

b) Real eigenvalues, 𝜆1 < 0 and 𝜆2 > 0. Saddle point: monotonous saddle path. 

c) Real eigenvalues, 𝜆1 > 0 and 𝜆2 > 0. Unstable node, non-cyclical paths. 

d) Complex eigenvalues, negative real parts. Stable focus, cyclical paths. 

e) Complex eigenvalues, zero real parts. Closed orbits. 

f) Complex eigenvalues, positive real parts. Unstable node: cyclical paths. 

 

5.5 Generalisation of the rules for general systems of equations 

a) If there are complex eigenvalues, the solution is cyclical. 

b) If all real eigenvalues are negative and all complex eigenvalues have negative real parts, 

the system is stable. 

c) If k eigenvalues are negative or have negative real parts and n – k eigenvalues are 

positive or have positive real parts, there is a k-dimensional stable manifold, leading to 

the equilibrium. For the system to be on this manifold, only k starting values of x can 

be chosen arbitrarily. The remaining and n – k ones have to take specific values. 



   

5.6 Phase diagrams for systems of two equations. 

The system to be considered is 

�̇�1 = 𝑓1(𝑥1, 𝑥2) 

�̇�2 = 𝑓2(𝑥1, 𝑥2) 

1. Phase diagrams can be drawn only for autonomous systems like the one above. If the system 

is non-autonomous, it needs to be transformed into an autonomous system via a 

transformation of variables. In economic models, the non-autonomous part of a differential 

equation often consists of an exponential function of time. The original variables are then 

transformed by multiplying them by an exponential function of time. In models with 

population growth is this is done by moving to per-capita variables. 

2. Draw an (𝒙𝟏, 𝒙𝟐) diagram with x1 on the horizontal axis and x2 on the vertical axis. Of 

course, this can be reversed if appropriate. 

3. Draw the isoclines �̇�1 = 0 and �̇�2 = 0. If 𝑓1(𝑥1, 𝑥2) or 𝑓2(𝑥1, 𝑥2) are implicit functions, 

use the implicit-function theorem to determine the shape of the isoclines. 

4.  Equilibria are determined by 𝑓1(𝑥1, 𝑥2) = 𝑓2(𝑥1, 𝑥2) = 0 . In the case on nonlinear 

functions, there may be multiple equilibria. 

5. Draw arrows that visualise the movements in horizontal and vertical direction. Draw 

horizontal-vertical combinations of these arrows into all sectors that are separated from each 

other by isoclines. 

6. Visualise the direction of motion of trajectories crossing the isoclines. Where do they 

come from, where do they go? In the intersection points with the �̇�1 = 0  isocline, all 

trajectories are vertical. In the intersection points with the �̇�2 = 0  isocline, they are 

horizontal. 

7. From this information one may infer the stability pattern: cyclical vs. non-cyclical, stable 

vs. unstable, and if unstable saddle path or complete instability. Caveat: foci and nodes are 

not always easily distinguished. A formal stability analysis using the eigenvalues of the 

Jacobian may be helpful. 

 

  



   

 

6 Dynamic optimisation and Pontryagin's maximum principle 

The problem is to maximise 

∫  𝑒−𝜌𝑡𝑓(𝑥, 𝑢)𝑑𝑡 + 𝑒−𝜌𝑇𝐹(𝑥(𝑇))
𝑇

0

 

with respect to 𝑢(𝑡) and – possibly – with respect to T and subject to 

�̇� = 𝑔(𝑥, 𝑢), 

𝑥(0) = 𝑥. 

x and u may be vectors. 𝑓(𝑥, 𝑢) and 𝑔(𝑥, 𝑢) are assumed to be concave. 

1. Write the current-value Hamiltonian  

𝐻 = 𝑓(𝑥, 𝑢) + 𝜆𝑔(𝑥, 𝑢), 

If x is a vector of length n, there will be a vector   of costate variables of length n as well. 

2. Determine the optimality conditions, i.e. the first-order condition(s) with respect to u and 

the canonical equation(s): 

𝐻𝑢 = 0. 

�̇� = 𝜌𝜆 − 𝐻𝑥  

If u is a vector of length k, there will be k optimality conditions. If x is a vector of length n, 

there will be n canonical equations. 

3. Eliminate the costate variable(s).  

3.1 Differentiate the first-order condition with respect to time. This gives an equation 

in which �̇� occurs.  

3.2 Use the canonical equation to eliminate �̇�. 

3.3 Insert for  from the first-order condition to eliminate . 

The result is a differential equation  �̇� = 𝜑(𝑥, 𝑢). This equation may be quite complex if 

the functions 𝑓(𝑥, 𝑢) and 𝑔(𝑥, 𝑢) contain interactions terms of x and u. Then there will be 

cross derivatives and they complicate the remainder of the analysis. 

4. To determine the equilibrium, set �̇� = 0 and �̇� = 0. The �̇� = 0 condition often has the 

economic interpretation of a capital-market equilibrium condition or an arbitrage condition. 

Note that the equilibrium is not always unique. 

5. To represent the solution, draw a phase diagram in the (𝑥, 𝑢) space with x on the horizontal 

axis and u on the vertical axis. Proceed as follows 

 Start with the isoclines.  

 Then draw the rectangular combination of arrows indicating horizontal and 

vertical motion.  



   

 Then add parts of the trajectories where they cross the isoclines.  

 Finally draw the saddle path (if there is one). 

6. Several possibilities exist regarding the time horizon and the termination of the programme. 

6.1 If the time horizon is infinite and if the Hamiltonian is strictly concave in (x,u), the 

optimal solution is the saddle path and the control variable "jumps" onto the saddle path 

at t=0. 

6.2 If the time horizon is finite and if the final state is evaluated by 𝑒−𝜌𝑇𝐹(𝑥(𝑇)), then 

𝜆(𝑇) = 𝐹′(𝑥(𝑇)). Inserting for 𝜆(𝑇) from the first-order condition gives a relationship 

between x(T) and u(T) that can be represented as a line in the (x,u) space. The optimal 

path is the trajectory connecting the vertical x=x0 line with this line within the given time 

T. 

6.3 If the time horizon is endogenous and if the final state is evaluated, the terminal 

conditions are  𝐻(𝑇) − 𝜌𝐹(𝑥(𝑇)) = 0  and  𝜆(𝑇) = 𝐹′(𝑥(𝑇)). Using these conditions,  

can be eliminated. This gives a point in the (x,u) space. The optimal path ends in this 

point. The optimal duration of the programme is determined by the time needed to move 

from the x=x0 line to this termination point.  

6.4 If the time horizon is endogenous and if the final state is not evaluated, the terminal 

conditions are  𝐻(𝑇) = 0  and  𝑒−𝜌𝑇𝜆(𝑇) = 0. There are models in which the second 

condition holds only for 𝑇 → ∞. 
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1 Solution of an n-th order linear difference equation 

6. Write the equation in the following form: 

  xt + a1 xt-1 + ….. + an xt-n = g(t). 

7. Find the particular solution to the non-homogeneous equation. 

7.1 Assume that the solution is �̅�𝑡 = ℎ(𝑡), where h(t) "resembles" g(t).  

E.g., if g(t)=gt, use �̅�𝑡 = ℎ𝑡.  

7.2 Solve the resulting equation for the parameter(s) of h(t). 

7.3 If the solution involves a division by zero, use �̅�𝑡 = 𝑡ℎ(𝑡). If this dos not help, use 

�̅�𝑡 = 𝑡2ℎ(𝑡), and so on .... 

7.4 The particular solution can be interpreted as a long-run equilibrium. 

8. Find the solution of the homogeneous equation 

8.1 Assume that the solution is �̅�𝑡 = 𝜆𝑡  . Thus: 

      t + a1t-1 + ….. + an t-n = 0, 

3.2 Rewrite this as 

𝜆𝑡−𝑛(𝜆𝑛 + a1𝜆𝑛−1 +  … + a𝑛−1𝜆 + a𝑛) = 0 

3.3 Solve the characteristic equation 

𝜆𝑛 + a1𝜆𝑛−1 +  … + a𝑛−1𝜆 + a𝑛 =  0. 

3.4 The solution of the difference equation is a linear combination of all possible 

solutions, i  

𝑥𝑡 = 𝐴1𝜆1
𝑡 +  … . +𝐴𝑛𝜆𝑛

𝑡 . 

In the case of a quadratic characteristic equation, a negative discriminate may lead to 

conjugate complex solutions. Then   

𝑥𝑡 = 𝑎2
𝑡/2(𝐴1 cos 𝜔 𝑡 + 𝐴2 sin 𝜔 𝑡). 

with 

cos 𝜔 =
𝑎1

2√𝑎2

   ,   sin 𝜔 = √1 −
𝑎1

2

4𝑎2 

 

  .  

9. Stability: The i with the largest absolute value determines the stability behavior of the 

equation in the long run: stable if |𝜆i
𝑚𝑎𝑥  | < 1 ,  unstable if  |𝜆i

𝑚𝑎𝑥  | > 1. 

10. To find the general solution to the non-homogeneous equation, write 

𝑥𝑡 = 𝐴1𝜆1
𝑡 +  … . +𝐴𝑛𝜆𝑛

𝑡 + �̅�𝑡. 

and use the information on particular values of xt at n different points in time to 

determine the Ais. 



   

5 Solution of a system of linear difference equations 

The system is given as a set of n equations, the i-th equation being 

xit = ai1 x1t-1 + ….. + ain xnt-1 + gi(t). 

4. Write the system in matrix form 

𝐱𝐭 = 𝐀𝐱𝐭−𝟏 + 𝐠(𝑡) 

with 

𝐱𝐭 = (

𝑥1𝑡

⋮
𝑥𝑛𝑡

) , 𝐀 = (

𝑎11 … 𝑎1𝑛

⋮ ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

) , 𝐠(𝑡) = (
𝑔1(𝑡)

⋮
𝑔𝑛(𝑡)

). 

5. Note that finding a particular solution is often impossible if the gi functions are of different 

types. Find the particular solution �̅�𝐭 by assuming that �̅�𝐭has the same shape as 𝐠(𝑡).  If for 

example there is a vector of exponential functions, 𝐠(𝑡)  = (1 + 𝛿)𝑡𝐠, where g is a vector 

of constants, then try �̅�𝐭 = (1 + 𝛿)𝑡𝛄 as a particular solution, where the 𝛄 is a vector of 

unknown constants. Using this in the difference equation, we have 

𝛄 = (𝚰 −
𝐀

1 + 𝛿
)

−1

𝐠. 

Alternatively one may prefer to write a system of n equations and solve it for the is by 

Cramer's rule. If |(1 + 𝛿)𝚰 − 𝐀| = 0, the system does not have a solution and we try �̅�𝒕 =

𝑡�̅�. With other functions 𝐠(𝑡), proceed in an analogous fashion. 

6. Find the solution of the homogeneous equations by determining the eigenvalues of A. They 

can be found by solving  det(A – I)=0. If n=2, they are  

𝜆1,2 =
tr(𝐀)

2
± √(

tr(𝐀)

2
)

2

− det (𝐀). 

In the general case of n equations, the solution of the homogeneous equations is  

𝑥𝑖𝑡 = 𝐴1𝛽𝑖
(1)

𝜆1
𝑡 + . . . +𝐴𝑛𝛽𝑖

(𝑛)
𝜆𝑛

𝑡 , 

where 𝑖 = 1, … , 𝑛  and where 𝛽𝑖
(𝑗)

denotes the i-th component of the eigenvector 

corresponding to the j-th eigenvalue. The first components of the eigenvectors are set equal 

to one:  𝛽1
(𝑗)

= 1 ∀𝑗 = 1, … , 𝑛. In the two-equations case we have 

𝑥1𝑡 = 𝐴1𝜆1
𝑡 + 𝐴2𝜆2

𝑡 , 

𝑥2𝑡 = 𝐴1

𝜆1 − 𝑎11

𝑎12
𝜆1

𝑡 + 𝐴2

𝜆2 − 𝑎11

𝑎12
𝜆2

𝑡 . 

7. Write down the solution of the homogeneous equations adding  �̅�𝒕 on the right-hand side.  

8. Determine the constants by inserting the known values of 𝐱𝐭 on the left-hand side and the 

corresponding values of t on the right-hand side. 

9. The system is stable if |𝜆𝑖| < 1 for all 𝑖 ∈ (0, 𝑛). In the case of complex eigenvalues, |𝜆𝑖| =

√𝛼2 + 𝜃2, where  is the real part and  is the imaginary part.  



   

6 Nonlinear difference equations and chaos in economic models 

4. To construct a phase diagram for a nonlinear difference equation, write xt on the vertical 

axis and xt-1  on the horizontal axis. Then draw xt = f(xt-1) and a 45° line into the diagram. 

Use f(xt-1) to determine  xt and use the 45° line to obtain the starting value for the next period 

from xt. 

5. Stability can be checked by determining the slope of f(xt-1) in the equilibrium. If the absolute 

value of the slope is larger than 1, the equilibrium is unstable. 

6. To construct a model that possibly generates chaos, specify the functions of the under-

lying economic model such that you get a hump-shaped transition function xt = f(xt-1). 

 

  



   

7 Differential equations 

4.1 Linear differential equations with constant coefficients 

Consider the differential equation: 

�̇� + 𝑎𝑥 = 𝑔(𝑡). 3 

5. To find a particular solution of the non-homogeneous equation, assume that �̅�(𝑡) has the 

same functional form as 𝑔(𝑡), e.g. constant, linear, or exponential. Then insert this into the 

differential equation such that �̇̅� + 𝑎�̅� = 𝑔(𝑡). Solve it. Usually this can be done without 

integration. If the solution involves division by zero, multiply the solution candidate by t and 

try again. 

6. To solve the homogeneous part, rewrite it as: 

𝑑𝑥

𝑑𝑡
= −𝑎𝑥. 

Multiply by 𝑑𝑡 and divide by x: 

𝑑𝑥

𝑥
= −𝑎𝑑𝑡. 

Integrate and obtain an equation which is logarithmic in x and linear in t. Solve this for x 

𝑥 = 𝐴 ∙ 𝑒−𝑎𝑡 , 

where 𝐴 = 𝑒𝐴𝑡−𝐴𝑥 . This is the solution of the homogeneous equation.  

7. The solution is stable if a > 0. 

8. Use a given 𝑥(𝑡∗) to eliminate the integration constant. 

 

 

8.2 Method of variation of the constant  

If the particular solution of the non-homogeneous equation cannot be found by the standard 

method, try this approach. 

4. Starting from the solution of the homogeneous equation, 𝑥 = 𝐴 ∙ 𝑒−𝑎𝑡, replace the constant 

A by a function of time, A(t). Use this in the original differential equation:  

�̇� ∙ 𝑒−𝑎𝑡 − 𝑎𝐴 ∙ 𝑒−𝑎𝑡 + 𝑎𝐴 ∙ 𝑒−𝑎𝑡 = 𝑔(𝑡). 

The last two terms on the left-hand side cancel out and we have 

�̇� = 𝑒𝑎𝑡𝑔(𝑡). 

                                                        
3  Sometimes a nonlinear differential equation can be transformed into a linear one, e.g in the case of 

Solows growth model, �̇� = 𝑠𝑘𝛼 − 𝑛𝑘. Replace k by 𝑧1/(1−𝛼) 
. Then �̇� = (1 − 𝛼)𝑠 − (1 − 𝛼)𝑛𝑧  . 



   

5. Integration then yields  

𝐴 = ∫ 𝑔(𝑡)𝑒𝑎𝑡 𝑑𝑡 + �̃�, 

where �̃� is the new integration constant. We then have 

𝑥 = (∫ 𝑔(𝑡)𝑒𝑎𝑡 𝑑𝑡 + �̃�) 𝑒−𝑎𝑡 . 

6. Solve this integral (if possible) and eliminate the integration constant by using a given 

𝑥(𝑡∗).  

 

 

4.3 Separable differential equations 

Consider a differential equation of the type  

𝑓(𝑥) ∙ �̇� = 𝑔(𝑡). 

3. Rewrite the equation by multiplying by 𝑑𝑡 and then integrating 

∫ 𝑓(𝑥)𝑑𝑥 + 𝐴𝑥 = ∫ 𝑔(𝑡)𝑑𝑡 + 𝐴𝑡. 

4. Solve the integral, subtract one of the constants on both sides to obtain a single constant 

and eliminate the constant by using a given 𝑥(𝑡∗). 

 

 

4.4 Linear differential equations with time-varying coefficients 

The differential equation is 

�̇� + ℎ(𝑡)𝑥 = 𝑔(𝑡). 

4. Let us initially look at the homogeneous equation and rewrite it 

𝑑𝑥

𝑥
= −ℎ(𝑡)𝑑𝑡. 

Integration yields 

ln(𝑥) + 𝐴𝑥 = − ∫ ℎ(𝑡) 𝑑𝑡 + 𝐴𝑡 

𝑥 = 𝐴𝑒− ∫ ℎ(𝑡)𝑑𝑡 . 

5. The solution to the non-homogeneous equation can be found by the method of variation 

of the constant. Rewrite the solution of the homogeneous equation by setting 𝐴 = 𝐴(𝑡) and 

𝑒− ∫ ℎ(𝑡)𝑑𝑡 = 𝑧(𝑡). 

𝑥 = 𝐴(𝑡) ∙ 𝑧(𝑡) . 



   

Use this in the non-homogeneous equation: 

�̇�𝑧 + 𝐴�̇� + ℎ(𝑡)𝐴𝑧 = 𝑔(𝑡) 

�̇�𝑧 + 𝐴 ∙ (�̇� + ℎ(𝑡)𝑧) = 𝑔(𝑡). 

The term in brackets vanishes since z is proportional to the solution of the homogeneous 

equation. Thus we have 

�̇� =
𝑔(𝑡)

𝑧(𝑡)
. 

Integration yields 

𝐴 = ∫
𝑔(𝑡)

𝑧(𝑡)
𝑑𝑡 + �̃� = ∫

𝑔(𝑡)

𝑒− ∫ ℎ(𝑡)𝑑𝑡
𝑑𝑡 + �̃�, 

where �̃�  is an integration constant. Thus we get as the general solution of the non-

homogeneous equation 

𝑥 = 𝑒− ∫ ℎ(𝑡)𝑑𝑡 ∙ (�̃� + ∫
𝑔(𝑡)

𝑒− ∫ ℎ(𝑡)𝑑𝑡
𝑑𝑡). 

6. The integration constant can be determined by inserting the known value of x on the left-

hand side and the corresponding time on the right-hand side.  

 

7.5 Phase diagrams for single differential equations and bifurcations 

Let the original differential equation be  �̇� = 𝑔(𝑧, 𝑡). 

5. Find a transformation 𝑥 = 𝜑(𝑧, 𝑡) , such that the equation becomes autonomous:  

 �̇� = 𝑓(𝑥). In economics, this is often done by multiplying x by an exponential function of 

time.4 

6. Draw an (𝒙,  �̇� ) diagram with x on the horizontal axis and  �̇� on the vertical axis and draw 

the 𝑓(𝑥) function into the diagram. If the function cuts the horizontal axis from above, the 

equilibrium is stable. If it cuts the horizontal axis from below, the equilibrium is unstable. 

7. To find bifurcations, change a parameter of the function 𝑓(𝑥) such that the function is 

shifted. If new equilibria emerge or if old ones vanish, there are bifurcations. 

8. To draw a bifurcation diagram, write the shift parameter on the horizontal axis and the 

equilibrium value(s) of x on the vertical axis. Use solid lines to characterise stable equilibria 

and dotted lines to characterise unstable equilibria. 

  

                                                        
4  The standard example in economics is Solow's growth model, where we divide by population and 

express all variable in per-capita terms. 



   

5  Systems of differential equations 

5.1  Systems of linear differential equations 

A system of linear differential equations is written as 

�̇� = 𝐀𝐱 + 𝐠(𝑡) 

6. To find a particular solution to the non-homogeneous equation, assume that �̅�(𝑡) has the 

same shape as 𝐠(𝑡) , use this in the differential equation, and solve for the unknown 

parameters of  �̅�(𝑡). If this involves a division by zero, multiply the solution candidate by t. 

A solution can usually be found only if the functions contained in 𝐠(𝑡) are of the same type. 

7. The solution of the homogeneous equation for the i-th variable is  

𝑥𝑖 = 𝐴1𝛽𝑖
(1)

𝑒𝜆1
 𝑡+ . . . +𝐴𝑛𝛽𝑖

(𝑛)
𝑒𝜆𝑛

 𝑡 , 

where  𝜆𝑗
  is the j-th eigenvalue and  𝛽𝑖

(𝑗)
is the i-th component of the corresponding 

eigenvector of the matrix  A. Eigenvalues are determined by 

det(𝐀 −  𝜆𝐈) = 0, 

which involves solving a polynomial of degree n. Eigenvectors are then found by solving  

(𝐀 −  𝜆𝐈)𝛃 = 0 

and setting the first element of each eigenvector equal to 1: 

8. In the special case of a system of two equations, we have  

𝜆1,2 =
tr𝐀

2
± √

(tr𝐀)2

4
− det𝐀. 

The solution of the homogeneous equation is 

𝑥1 = 𝐴1𝑒𝜆1𝑡 + 𝐴2𝑒𝜆2𝑡 

𝑥2 = 𝐴1

𝜆1 − 𝑎11

𝑎12
𝑒𝜆1𝑡 + 𝐴2

𝜆2 − 𝑎11

𝑎12
𝑒𝜆2𝑡 . 

The system is stable if 𝜆1 < 0  and 𝜆2 < 0 . If the eigenvalues are complex, i.e. 

𝜆1,2 = 𝛼 ± 𝜃𝑖, where 𝑖 = √−1, then we have cyclical solutions: 

𝑥1 = 𝑒𝛼𝑡(𝐴1 cos 𝜃𝑡 + 𝐴2 sin 𝜃𝑡) 

𝑥2 = 𝑒𝛼𝑡 (
(𝛼 − 𝑎11)𝐴1 + 𝜃𝐴2

𝑎12
cos 𝜃𝑡 +

(𝛼 − 𝑎11)𝐴2 + 𝜃𝐴1

𝑎12
sin 𝜃𝑡). 

The cyclical paths are stable if  < 0, i.e. if trA < 0.  

9. To find the general solution of the non-homogeneous equations, add the particular 

solution to the general solution of the homogeneous equation. For the i-th equation, we have  

𝑥𝑖 = 𝐴1𝛽𝑖
(1)

𝑒𝜆1
 𝑡+ . . . +𝐴𝑛𝛽𝑖

(𝑛)
𝑒𝜆𝑛

 𝑡 + �̅�𝑖, 



   

10. Finally determine the integration constants by inserting the known values of xi on the 

left-hand side and the corresponding values of t on the right-hand side.  

 

 

5.2 Linearisation of nonlinear systems of differential equations and stability 

analysis 

A system of nonlinear differential equations can be linearised by using a first-order Taylor 

approximation. The i-th equation of the homogeneous system is 

�̇�𝑖 = 𝑓𝑖(𝑥1, … , 𝑥𝑛 , 𝑡) 

1.  Determine the Jacobian matrix J with the elements 𝑎𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
. 

2. The linerarised system is �̇� = 𝐉(𝐱 − �̅�). 

3. Stability is determined by the eigenvalues of J, where the results are only valid in a 

neighbourhood of the equilibrium. See Section 5.4 below for the stability conditions. 

 

 

5.3  Rules for stability of systems of two equations 

g) Real eigenvalues, 𝜆1 < 0 and 𝜆2 < 0. Stable node: non-cyclical paths. 

h) Real eigenvalues, 𝜆1 < 0 and 𝜆2 > 0. Saddle point: monotonous saddle path. 

i) Real eigenvalues, 𝜆1 > 0 and 𝜆2 > 0. Unstable node, non-cyclical paths. 

j) Complex eigenvalues, negative real parts. Stable focus, cyclical paths. 

k) Complex eigenvalues, zero real parts. Closed orbits. 

l) Complex eigenvalues, positive real parts. Unstable node: cyclical paths. 

 

5.5 Generalisation of the rules for general systems of equations 

d) If there are complex eigenvalues, the solution is cyclical. 

e) If all real eigenvalues are negative and all complex eigenvalues have negative real parts, 

the system is stable. 

f) If k eigenvalues are negative or have negative real parts and n – k eigenvalues are 

positive or have positive real parts, there is a k-dimensional stable manifold, leading to 

the equilibrium. For the system to be on this manifold, only k starting values of x can 

be chosen arbitrarily. The remaining and n – k ones have to take specific values. 



   

5.6 Phase diagrams for systems of two equations. 

The system to be considered is 

�̇�1 = 𝑓1(𝑥1, 𝑥2) 

�̇�2 = 𝑓2(𝑥1, 𝑥2) 

1. Phase diagrams can be drawn only for autonomous systems like the one above. If the system 

is non-autonomous, it needs to be transformed into an autonomous system via a 

transformation of variables. In economic models, the non-autonomous part of a differential 

equation often consists of an exponential function of time. The original variables are then 

transformed by multiplying them by an exponential function of time. In models with 

population growth is this is done by moving to per-capita variables. 

2. Draw an (𝒙𝟏, 𝒙𝟐) diagram with x1 on the horizontal axis and x2 on the vertical axis. Of 

course, this can be reversed if appropriate. 

3. Draw the isoclines �̇�1 = 0 and �̇�2 = 0. If 𝑓1(𝑥1, 𝑥2) or 𝑓2(𝑥1, 𝑥2) are implicit functions, 

use the implicit-function theorem to determine the shape of the isoclines. 

4.  Equilibria are determined by 𝑓1(𝑥1, 𝑥2) = 𝑓2(𝑥1, 𝑥2) = 0 . In the case on nonlinear 

functions, there may be multiple equilibria. 

5. Draw arrows that visualise the movements in horizontal and vertical direction. Draw 

horizontal-vertical combinations of these arrows into all sectors that are separated from each 

other by isoclines. 

6. Visualise the direction of motion of trajectories crossing the isoclines. Where do they 

come from, where do they go? In the intersection points with the �̇�1 = 0  isocline, all 

trajectories are vertical. In the intersection points with the �̇�2 = 0  isocline, they are 

horizontal. 

7. From this information one may infer the stability pattern: cyclical vs. non-cyclical, stable 

vs. unstable, and if unstable saddle path or complete instability. Caveat: foci and nodes are 

not always easily distinguished. A formal stability analysis using the eigenvalues of the 

Jacobian may be helpful. 

 

  



   

 

7 Dynamic optimisation and Pontryagin's maximum principle 

The problem is to maximise 

∫  𝑒−𝜌𝑡𝑓(𝑥, 𝑢)𝑑𝑡 + 𝑒−𝜌𝑇𝐹(𝑥(𝑇))
𝑇

0

 

with respect to 𝑢(𝑡) and – possibly – with respect to T and subject to 

�̇� = 𝑔(𝑥, 𝑢), 

𝑥(0) = 𝑥. 

x and u may be vectors. 𝑓(𝑥, 𝑢) and 𝑔(𝑥, 𝑢) are assumed to be concave. 

7. Write the current-value Hamiltonian  

𝐻 = 𝑓(𝑥, 𝑢) + 𝜆𝑔(𝑥, 𝑢), 

If x is a vector of length n, there will be a vector   of costate variables of length n as well. 

8. Determine the optimality conditions, i.e. the first-order condition(s) with respect to u and 

the canonical equation(s): 

𝐻𝑢 = 0. 

�̇� = 𝜌𝜆 − 𝐻𝑥  

If u is a vector of length k, there will be k optimality conditions. If x is a vector of length n, 

there will be n canonical equations. 

9. Eliminate the costate variable(s).  

9.1 Differentiate the first-order condition with respect to time. This gives an equation 

in which �̇� occurs.  

9.2 Use the canonical equation to eliminate �̇�. 

9.3 Insert for  from the first-order condition to eliminate . 

The result is a differential equation  �̇� = 𝜑(𝑥, 𝑢). This equation may be quite complex if 

the functions 𝑓(𝑥, 𝑢) and 𝑔(𝑥, 𝑢) contain interactions terms of x and u. Then there will be 

cross derivatives and they complicate the remainder of the analysis. 

10. To determine the equilibrium, set �̇� = 0 and �̇� = 0. The �̇� = 0 condition often has 

the economic interpretation of a capital-market equilibrium condition or an arbitrage 

condition. Note that the equilibrium is not always unique. 

11. To represent the solution, draw a phase diagram in the (𝑥, 𝑢) space with x on the 

horizontal axis and u on the vertical axis. Proceed as follows 

 Start with the isoclines.  

 Then draw the rectangular combination of arrows indicating horizontal and 

vertical motion.  



   

 Then add parts of the trajectories where they cross the isoclines.  

 Finally draw the saddle path (if there is one). 

12. Several possibilities exist regarding the time horizon and the termination of the pro-

gramme. 

12.1 If the time horizon is infinite and if the Hamiltonian is strictly concave in (x,u), the 

optimal solution is the saddle path and the control variable "jumps" onto the saddle path 

at t=0. 

12.2 If the time horizon is finite and if the final state is evaluated by 𝑒−𝜌𝑇𝐹(𝑥(𝑇)), then 

𝜆(𝑇) = 𝐹′(𝑥(𝑇)). Inserting for 𝜆(𝑇) from the first-order condition gives a relationship 

between x(T) and u(T) that can be represented as a line in the (x,u) space. The optimal 

path is the trajectory connecting the vertical x=x0 line with this line within the given time 

T. 

12.3 If the time horizon is endogenous and if the final state is evaluated, the terminal 

conditions are  𝐻(𝑇) − 𝜌𝐹(𝑥(𝑇)) = 0  and  𝜆(𝑇) = 𝐹′(𝑥(𝑇)). Using these conditions,  

can be eliminated. This gives a point in the (x,u) space. The optimal path ends in this 

point. The optimal duration of the programme is determined by the time needed to move 

from the x=x0 line to this termination point.  

12.4 If the time horizon is endogenous and if the final state is not evaluated, the terminal 

conditions are  𝐻(𝑇) = 0  and  𝑒−𝜌𝑇𝜆(𝑇) = 0. There are models in which the second 

condition holds only for 𝑇 → ∞. 

 


